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Motivation for Radiation-Hard Scintillator and WLS Fiber
Development

Future and upgrade colliders impose unprecedented challenges on the radiation-
hardness of the active media of the calorimeters. Scintillators play a central role as

the active medium of calorimeters.

What are we looking for?
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Compact

High light yield
High resolution
Radiation resistant
Fast

Cost effective
scintillators.
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Intrinsically Rad-Hard Scintillators

Commercially Available Scintillating Materials:

e Polyethylene Naphthalate (PEN)
* Polyethylene Terephthalate (PET)

PEN:

v" Intrinsic blue scintillation (425 nm)

PET:

v A common type polymer

v" Plastic bottles and as a substrate in thin film
solar cells.

v Emission spectrum of PET peaks at 385 nm
[Nakamura, 2013]




Intrinsically Rad-Hard Scintillators

HEM/ESR: sub-pum film stack of Poly(Ethylene-2,6-Naphthalate)/PEN,

polyester, polyethylene terephthalate (PET): intrinsic blue scintillation!
425 nm; 10,500 photons/MeV; ....

A LETTERS JournaL ExrPLoRING
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EPL, 95 (2011) 22001 www.epljournal.org
doi: 10.1209/02956-5076/95/ 22001

Evidence of deep-blue photon emission at high efficiency
by common plastic

H. Nakamura>2(® | Y. Suirakawa?, S. Takanasur' and H. Suivmizu®

Table 1: Properties of the three samples used in the present study.

Material Polyethylene Organic scintillator Plastic bottle
naphthalate (ref. [14]) (ref. [13])
Supplier Teijin Chemicals Saint-Gobain Teijin Chemicals
Base (C14H1004)n (CoHio)n (C10HsO4)n
Density 1.33g/cm® 1.03g/cm® 1.33g/cm®
Refractive index 1.65 1.58 1.64
Light output ~ 10500 photon/MeV 10000 photon/MeV  ~ 2200 photon/MeV
Wavelength max. emission 425nm 425nm 380 nm




Intrinsically Rad-Hard Scintillators - PEN
100 MRad (1 MGy) Radiation Resistance!

N. Belkahlaa et al., Space charge, conduction and photoluminescence measurements in gamma irradiated
poly (ethylene-2,6-naphthalate) Rad. Physics & Chem,V101, August 2014

Abstract: Polyethylene naphthalate (PEN) thin films were subjected to gamma rays at different doses and
changes in both the dielectric and photophysical properties were investigated. Samples were irradiated in
air at room temperature by means of a 60Co gamma source at a dose rate of ~31 Gy/min. Total doses of
650 kGy(344 h) & 1023 kGy(550 h) were adopted. The high radiation resistance of PEN film is highlighted.
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Laboratory
Measurements

150 GeV muons
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PEN Performance in Beam Measurements

We tested 2 - 4 mm thick PEN and PET tiles read out
with green wavelength shifting fibers with 150 GeV

muons.
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New SiX Scintillators

* The scintillators have a base Primary Fluor (PTP) Emission Spectrum

material, primary fluor, and s ol [/
secondary fluor. 8 5 |
* The main scintillation comes §4-=r"'
from the primary fluor. $ i
% %0 = o

Mavelength (re) (Excitation=290 rm, Quantum Yield=0,93)

* The secondary fluor, or

waveshifter, absorbs the “[ secondary Fluor (bis-MSB) |
primary’s emissions and re- . Absorption/Emission Spectra |
emits to a wavelength that is o | ' Good PMT QE |

and low self- 3
absorption, gf
thus a maximal
efficiency

desirable for optimum
efficiency.
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% Transmission

New SiX Scintillators

Lose only 7 % transmission after
40 Mrad proton radiation
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Almost no change on emission and
absorption after irradiation
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SiX Production
Grooved Tiles
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Control Circuits
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PEN Radiation Damage Studies (MSU)
Transmission

Facilities: B
- National Superconducting Cyclotron Laboratory £ —
- Used %°Co, 1.33 MeV Gammas : /
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IRRAD facility at CERN PS

10 x 10 cm PEN tile was placed in
the PS accelerator IRRAD area.

* First batch — perpendicular to the
beam direction. Three different
positions were selected to expose

~ to protons
.,'/~~ * Second batch — tilted ~30 degrees
= .' to beam direction - three
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different position were exposed
to the proton beam
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 Samples were irradiated durin
one week. In average 30 Mra
was absorbed per spot
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24 GeV protons,
beam spot (FWHM) 15x15 mm?
proton flux - ¥6x10° p cm2s?

=» 75% loss at 40 Mrad.




Radiation Damage Studies (lowa)

We i1rradiated scintillator samples with using e

137Cs gamma source at lowa Rad Core

1.4 Mrad and 14 Mrad
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Permanent damage - plateau
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 Damage was calculated in terms of
light yield
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Percent Damage After Irradiation

Summary of irradiation results

Initial damage
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Permanent Damage After Irradiation

Permanent damage
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LED Stimulated Recovery

Can we stimulate the recovery of scintillators damaged from
radiation?
v By using an array of tri-color red, blue, green (RGB) LEDs i

Laser pulse &%
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i / \ —— PEN #3 (Dark Box) L \ —— PEN #3 (Dark Box)
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Different Materials:
* Eljen brand EJ-260 (N) and overdoped version EJ2P.

» Lab produced plastic scintillator (SiX)

NIM B395, 13, 2017



Percent Damage After Irradiation (%)

LED Stimulated Recovery

SiX EJ260N EJ2602P
20 g . | 10 MRad Da‘rk Box | :\0\40 L | . | 10 MRad D;rk Box 1 :\350 F | . | 10 MRad D;rk Box
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Days after Irradiation Days after Irradiation Days after Irradiation
Blue emission Green emission Green emission
* SiX showed significant effect, the

Tile ‘a’, Total Recovery  ‘c’, Permanent Damage sample on RGB LED recovering 10%

SiX RGB 56.3 + 2.4% 30.7 £ 1.6% more and faster (4.5 vs 5.5 days)
SiXdarkbox | 45.7+2.5% | | 44.1£19% |

EJN RGB 24.0 + 2.2% 6.92 + 0.7% * Neither EJN and EJ2P showed
~EJNdarkbox ~  21.1+18% 159+0.6% significant effect.

EJ2P RGB 26.9 + 3.1% 15.2 + 0.9%

EJ2Pdarkbox  26.5 +2.2% 13.7+ 0.7% * ‘Blue’ scintillators respond to color

spectrum but ‘green’ scintillators
are affected very little.

NIM B395, 13, 2017



Quartz with Thin Film Coating

Quartz alone is extremely radiation-hard but only a

Cerenkov radiator = very small amount of directional

light
=» Quartz plates coated with organic/inorganic
scintillators/wavelength shifters ~ scintillators

Scintillator/WLS Films on Quartz Tiles
* Ptp, anthracene

* ZnO0:Ga; Csl; CeBr3 — emissions 375-450 nm; T<17ns il

* Csl and CeBr3 will be protected with an over-
deposited quartz film 250 nm thick.

— 2 Bell Jar sputtering systems
+ Al Ag, Ay, Cr, Cu, Ir, Ni, Ptir, Ti, ZnO2-
Ga

-  2tube sguttering systems-dedicated
to 99.999% pure aluminum
sputtering

+  Optical fiber mirroring

— 1 Bell Jar system for resistive
evaporation

* Al Ag, Au, Cr, Cu, Al & MgF2 surface
mirrors, Ni, NiCr, TiN-

— 1 Pyrex Bell Jar system for resistive
evaporation-dedicated to Scintillator
and WLS materials

. pTp, TPB, POPOP, Cesium lodide,

Anthracene, Bis-MSB, Cerium(ll)
bromide

— 1 Tall Bell Jar system (17”dia x
70"tall) designed for resistive
evaporation with rotating motor at
45° and 6 rpm speeds

*  NiCr “electroding” of MCPs
. gg’tancs from boat to substrate is

— 1 Large Bell Jar (34.5” ID x 50.5" tall)
. Resistive setup currently
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Radiation-Hard WLS Fibers

1 Quartz rods with surface coating

! Quartz Fibers with pTp
Coating

2 Capillaries
3 Doped quartz rods

| PTP Fiber Plate Charge Distributions |
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3 Cerium-doped Scintillating Glasses
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Radiation-Hard WLS Fibers

- 1 Quartz rods with surface coating
3HF+Meltmount injected 2 Capillaries

TeflonAF 800um ID 3 Doped quartz rods

3HF Core Quartz WLS Capillaries

Expected Anthracene Fiber

o'k Pulse:

i ' ~200 KeV/mm x 0.25mm x 40
e photons/KeV x 2% transmission x
20% QE ~ 8 p.e.

Typical Observed Pulse:

~ 8-9 p.e.
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Conclusions

The options of intrinsically radiation-hard scintillators is being expanded
with the addition of Scintillator-X. Different combinations e.g. PEN+PET
and different variants of Scintillator-X can be probed.

Quartz is extremely radiation-hard. With the correct combination of
coating and readout, it can be the optimal option for forward region in all
collider experiments. Coating is a relatively easy process nowadays. We
need to probe different types of coatings and also their mixtures.

Radiation-hard wavelength shifting fibers need to be studied in further
detail. Need more and realistically sized samples tested in actual
calorimeter environments.



