Diamond detector technology, status and perspectives

Harris Kagan Ohio State University for the RD42 Collaboration

4th International Workshop on Technology in Particle Physics Beijing, China May 26, 2017

<u>Outline of Talk</u>

- Introduction Motivation, RD42, Properties and Charge Collection
- Radiation Tolerance
- Diamond Devices in the LHC and Experiments
- Rate Studies
- Diamond Device Development 3D Diamond
- Diamond Device Development BCM'
- Summary

Physics Experiments at the Energy Frontier

HEP experiments are physically large devices composed of high precision inner detectors (r=3-25cm) which must withstand large radiation doses!

Radiation Tolerance Scale of inner layers is 10¹⁶-10¹⁷cm⁻² (>500Mrad)

Diamond has the following properties:

Electronic Properties:

- Radiation tolerance no frequent replacements
- Low dielectric constant low capacitance
- Low leakage current low readout noise
- Good insulating properties large active area
- Room temperature operation no cooling necessary
- Fast signal collection time no ballistic deficit
- Smaller signal than Silicon larger energy to create eh-pair

This talk is about:

- Polycrystalline Chemical Vapor Deposition (pCVD) Diamond
- Single Crystal Chemical Vapor Deposition (scCVD) Diamond

Introduction - The 2017 RD42 Collaboration

The 2017 RD42 Collaboration

A. Alexopoulos³, M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶, M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini², V. Belyaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³, A. Bes³⁰, J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹, D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹, A. Dabrowski³, R. D'Alessandro⁵, D. Dauvergne³⁰, W. de Boer¹², C. Dorfer²⁶, M. Dunser³, V. Eremin⁸, R. Eusebi²⁷, G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, L. Gallin-Martel³⁰, M.L. Gallin-Martel³⁰, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹, M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹, E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵, M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶, M. Hoeferkamp²³, T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹, C. Hutton¹⁹, H. Jansen³, J. Janssen¹, H. Kagan^{15, (I)}, K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵ F. Kassel¹², M. Kis⁷, V. Konovalov¹⁵, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰, S. Lagomarsino⁵, A. Lo Giudice17, E. Lukosi28, C. Maazouzi9, I. Mandic11, C. Mathieu⁹, M. Menichelli³¹, M. Mikuž¹¹, A. Morozzi³¹ J. Moss³², R. Mountain²², S. Murphy²⁴, M. Muškinia¹¹, A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹, H. Pernegger³, R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza², A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³, D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C. Schmidt⁷, S. Schnetzer¹⁶, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³, L. Servoli³¹, S. Smith¹⁵, B. Sopko²⁰, V. Sopko²⁰. S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹, R. Stone¹⁶, C. Sutera², B. Tannenwald¹⁵, A. Taylor²³, M. Traeger⁷, D. Tromson¹³, W. Trischuk^{18,◊}, C. Tuve², L. Uplegger⁶, J. Velthuis¹⁹, N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹, R. Wallny²⁶, J.C. Wang²², J. Weingarten²⁵, C. Weiss³, T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL, Batavia, USA ⁷ GSI, Darmstadt, Germany ⁸ loffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France ¹⁰ ITEP, Moscow, Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia ¹² Universität Karlsruhe, Karlsruhe, Germany ¹³ CEA-LIST Technologies Avancees, Saclay, France ¹⁴ MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada ¹⁹ University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA ²⁹ INFN-Lecce, Lecce, Italy ³⁰ LPSC-Grenoble, Grenoble, Switzerland ³¹ INFN-Perugia, Perugia, Italy 32 Cal State Univ - Sacramento, USA

130 participants

32 institutes

Chemical Vapor Deposition (CVD) Diamond Growth

Side View of pCVD Diamond

(Courtesy of Element Six)

Diamonds are "synthesized" from a plasma
The diamond "copies" the substrate

Detectors Constructed with Diamond:

♦ d=(µ_eτ_e + µ_hτ_h)E where d = collection distance = ave. dist. e-h pair move apart
♦ d=µEτ = vτ with µ = µ_e + µ_h → v = µ E and τ = μ_eτ_e+µ_hτ_h/μ_e+µ_h
♦ Q=d/t Q₀ → for large charge need good collection distance - must maximize µ and τ
♦ I=Q₀ v/d

TIPP 2017 – Beijing, China

Harris Kagan

Polycrystalline CVD (pCVD) Wafer Growth

Wafers 15cm diameter; wafer collection distance 400µm-500µm

Uniformity across wafer ~5%

Single-crystal CVD (scCVD) Wafer Growth

Wafers 5-10mm × 5-10mm; scCVD diamond collects full charge

TIPP 2017 – Beijing, China

Harris Kagan

Characterization of Diamond:

- High quality pCVD diamond typically "pumps" by a factor of 1.5-1.8
- Traps/defects in material \rightarrow ionization creates carriers which may fill traps
- Usually operate at E=1-2V/ $\mu m \rightarrow$ drift velocity saturated
- Charge collection distance of 100 $\mu m \rightarrow$ Average charge of 3600e

Radiation Tolerance

- binding energy, displacement energy
- charge collection distance
- mean free path, drift distance
- elastic, inelastic, total cross section

Radiation Tolerance

pCVD Diamond Trackers:

- \blacklozenge Patterning the diamond \rightarrow pads, strips, pixels!
- ♦ Successfully made double-sided devices; ~edgeless.
- Segmented devices critical in radiation studies charge and position.

Test Beam Setup

Irradiated devices characterized in test beams - transparent or unbiased prediction from telescope.

Proton Irradiation Summary - CERN PS 24 GeV protons

- $\bullet \mathrm{mfp}_0$ initial traps in material
- \bullet k damage constant
- $\bullet \phi$ fluence
- Assume $mfp_e = mfp_h$

Irradiation results up to 2.2 x 10^{16} p/cm² (~500Mrad) Same damage curve, same damage constant (k) for pCVD and scCVD diamond Larger mfp₀ performs better at any fluence 24 GeV proton damage characterized

TIPP 2017 – Beijing, China

Harris Kagan

Charge Collection Distance versus Mean Free Path

♦ For pCVD ccd < thickness; however for scCVD ccd ~ thickness. To compare must use correct form of damage equation ccd → mfp</p>

$$\frac{1}{mfp} = \frac{1}{mfp_0} + k\phi$$

- \blacklozenge Collection Distance coincides with Mean Free Path when ccd << t
- Collection Distance is raw data \rightarrow no correction.

Proton Irradiation at Lower Energy - LANL 800 MeV protons:

Damage equation:

$$\frac{1}{\mathrm{mfp}} = \frac{1}{\mathrm{mfp}_0} + k\phi$$

- $\blacklozenge \ mfp_0$ initial traps in material
- \blacklozenge k damage constant
- $\bullet \phi$ fluence

• Assume
$$mfp_e = mfp_h$$

New results from low energy irradiation Irradiation results up to $1.3 \times 10^{16} \text{ p/cm}^2$ Same damage curve: $1/\text{mfp}=1/\text{mfp}_0 + k \phi \rightarrow k = 1.2 \times 10^{-18} \mu \text{m}^{-1} \text{cm}^2$ 800 MeV protons 1.6-1.8× more damaging than 24 GeV proton

TIPP 2017 - Beijing, China

Harris Kagan

Summary of proton, neutron and pion irradiations

Particle	Energy	Relative k
р	24 GeV	1.0
	800 MeV	$1.79{\pm}0.13$
	70 MeV	2.4±0.4
	25 MeV	4.5±0.6
n	1 MeV	4.5±0.5
π	200 MeV	2.5 - 3.0

Damage curves are beginning to be mapped out

Applications in the LHC and Experiments

- beam condition/beam loss monitors
- pixel detectors
- 3D devices

- Beam Conditions Monitors/Beam Loss Monitors
 Essentially all modern collider experiments
- Current generation Pixel Detectors
 - •ATLAS Diamond Beam Monitor (DBM)
- Future HL-LHC Trackers
 - •3D diamond
- Future BCM'
 - Multipad design

Diamond devices in experiments

- ATLAS DBM: diamond pixel detectors in ATLAS (tracking)
- Total production: 45 diamonds (500µm thick) w/FE-I4b
- Modules Assembled at CERN
- Installed during LS1

8 telescopes (2 Si\6 Diamond) symmetric around ATLAS IP

854mm < |z| < 1092mm 3.2 < |η| < 3.5

TIPP 2017 – Beijing, China

Diamond devices in experiments

- ATLAS DBM integrated in ATLAS readout in 2015
- Thresholds tuned to 2500e

•Would like to lower this (1100e possible on bench)

• Took data - found operation issues

Diamond devices in experiments

• Use hits from the 3 modules for reconstructing tracks

Longitudinal distance of the projected particle tracks to the interaction point

Radial distance of the projected tracks of the closest approach to the interaction point

- Can discriminate between IP and background particles
 Plots above use initial alignment
- 2 electrical incidents in 2015 caused loss of modules(Si/D)
 now in re-commissioning phase

Rate Studies

- bunch spacing
- fast electronics
- rate effects

Rate studies in pCVD diamond

- \bullet Done at PSI 2 yrs ago published rates up to 300kHz/cm^2
- Last year w/new electronics, rates up to 10-20MHz/cm²
- Pad detector tested in ETH-Z telescope (CMS Pixels)
- Electronics is prototype for HL-LHC BCM/BLM

19.8ns bunch spacing clearly visible

Rate studies in pCVD diamond

- Done at PSI two years ago rates up to 300kHz/cm^2
- Last year w/new electronics, rates up to 10MHz/cm²

No rate dependence observed in pCVD up to 10-20MHz/cm² Now extending dose to 10¹⁶ n/cm² Harris Kagan 23

Device Development - 3D Diamond

- mean free path, drift distance
- planar strip, phantom, 3D
- pixel detectors

After large radiation fluence all detectors are trap limited
Mean free paths < 75µm
Would like to keep drift distances smaller than mfp

Have to make resistive columns in diamond for this to work -columns made with 800nm femtosecond laser -initial cells 150 μ m x 150 μ m; columns 6 μ m diameter

Simultaneously readout all 3 devices

Two years ago we showed the results in scCVD diamond -Compared scCVD strip detector (500V) with 3D (25V) Last year the first 3D device in pCVD diamond -Compare pCVD strip detector (500V) with 3D (60V) This year the first 3D pixel detector in pCVD diamond

- 3D cells are 150µm × 150µm
- Measured noise ~proportional to capacitance
- Measured Signal read out as ganged cells
 - Visually 3D gives more charge than planar strip!

• Measured signal (diamond thickness 500um):

- Planar Strip ave charge
 - 6,900e or ccd=192um
- 3D ave charge
 - $13,500e \text{ or } ccd_{eq} = 350-375um$
- For the first time collect >75% of charge in pCVD

- In May/Sept 2016 tested first full 3D in pCVD with three dramatic improvements
 - An order of magnitude more cells (1188 vs 99)
 - Smaller cell size (100µm vs 150µm)
 - Higher column production efficiency (99% vs 92%)

Readout side

HV bias side

Proved viability (>99%) of new column fabrication procedure

- Issues mainly due to communications about handling procedures led to:
- Surface contamination
- Breaks in surface metallization

All fixable!

- Preliminary results of full 3D device works well
 - First plots of 3D ave charge in entire detector
 - Largest charge collection in pCVD diamond
 - >85% of charge collected in contiguous region
- Analysis in progress of full detector

Production of first 3D pixel device in pCVD - CMS pixel chip

Fabrication

Metallisation & Bump Bonding

- connect to bias and readout with surface metallisation
- cleaned and prepared for photo-lithography at OSU
- photo-lithography and metalisation of HV back plane at OSU
- photo-lithography and metalisation of pixel readout at Princeton by Bert Harrop
- bump and wire bonding at Princeton

- Laser fabrication of resistive columns: Oxford
- Mask set: Manchester
- Cleaning/Backplane metallization: Ohio State
- Bump Bonding/Pixel metallization: Princeton
- Module Building/Testing: ETH-Zürich, Rutgers
- Irradiation: JSI/Ljubljana (still to be done)
- Beam Tests: ETH-Zürich, Ohio State

TIPP 2017 – Beijing, China

Harris Kagan

3D Diamond Pixel Efficiency (97%)

Some configuration issues with pixel chip

Planar Silicon Pixel Efficiency (99%)

Production Plans: ATLAS, CMS 3D pCVD Pixels

Presently producing 3500 cell pixel prototype

• Two being drilled now: Oxford (complete) • Manchester (mid-June) Metallization in progress • Bump bonding • ATLAS @IFAE CMS @Princeton Hope to be ready for June test beams

Summary

- Worked closely with manufacturers to increase quality
- Diamonds in the LHC machine making impact moving forward
- ATLAS/CMS -BCM, BLM, DBM will see collisions again soon
 - Abort, luminosity and background functionality in all LHC expts
- First pixel project is about to start taking data again
 ATLAS DRM being no commissioned for 13 TeV colligions
 - ATLAS DBM being re-commissioned for 13 TeV collisions
- 3D detector prototypes made great progress
 - 3D works in pCVD diamond; scale up worked; smaller cells worked
- Quantified understanding of rate effects in diamond
 - pCVD shows no rate effect up to 10-20MHz/cm²
- 3D diamond pixel devices being produced (10¹⁷/cm²)
 - Efficiency looks good; PH in progress

Backup Slides

Device Development - BCM'

- abort threshold
- danger level, safety margin
- luminosity

Abort and Luminosity Functions

Abort

- Require out-of-time and in-time signals above threshold signifying beam background at the danger Level
- Danger levels can be very high ATLAS SCT 25k/cm²/BC i.e. ~4000x lumi signal
- Need to keep flexibility for threshold settings

Luminosity

- Main algorithm: (absence of) in-time hits Max sensitivity ~1.6 hits/cell
- Need robust device, signal stability paramount

Present BCM suffers from abort-lumi incompatibility

- Abort thresholds can not be set higher without abandoning lumi
- Fast timing needed for abort lowers S/N thus limiting lumi stability

Separate functions at the HL-LHC

- Two fast devices from sensor to off-detector
- Keep as much commonality as possible
- 4 stations/side with abort, lumi-BCM', BLM

Diamond development - BCM'

Sensor Design

- Build in dynamic range into sensor design
- 6 different pads from 1 to 32 mm²
 - occupancy from 0.06 to 2 at $\mu\text{=}200$
 - covers sweet spot for lumi
 - 250 to 80000 MIP's at the declared SCT danger level (25k/cm²/BC)
 - need to update the ballpark danger level for ITK asap !
- pCVD diamond substrate 300-500 μm thick
- Pads bonded to chip
- Prototype produced, to be tested in PSI TB at 5-10 MHz/cm² end of May

Tested @PSI last week with RD42 fast amp used for Rate Studies!

Start with RD42 fast amp used in rate studies

- Designed in 130nm; will be updated to 65nm
- Rise time 3-6ns; Baseline recovery time 12-18ns
- Noise for 2pf input ~550e

ATLAS electronics ideas

- Two preamp designs since otherwise large dynamic range (10⁴) needed to cover lumi and abort in same channel
- High gain for lumi; low gain for abort. Optimize gain and speed vs SNR for lumi and abort separately
- Rise time ~few ns; return to baseline 10ns
- Tune parameters based on beam tests
- 16 channels (8/8 lumi/abort)

Diamond development - BCM'

- Bunches 19.8ns apart clearly separated
- Trigger is at 69ns
- Hits in bunch before trigger not allowed