GridPix detector with Timepix3 ASIC

Yevgen Bilevych, Klaus Desch, <u>Harry van der Graaf</u>, Fred Hartjes, Kevin Heijhoff, Peter Kluit, Gerhard Raven, Tobias Schiffer, Jan Timmermans

2017 - 05 - 25

Invited talk at the TIPP17 conference Beijing

Harry van der Graaf (Nikhef)

Introduction

What is GridPix?

- GridPix is a type of micro-pattern gaseous detector (MPGD)
- Other well known types of MPGDs use GEM foils and Micromegas

What sets GridPix apart from the others?

- The grid is produced directly on top of ASIC
- Good alignment of grid holes and pixels
- Primary electron counting instead of charge integration improves the energy resolution

Micromegas

GEM foil

Harry van der Graaf (Nikhef)

Introduction

Harry van der Graaf (Nikhef)

GridPix detector with TPX3 ASIC

2017-05-25 3 / 15

Application

• Potential of GridPix has been demonstrated in several environments

CAST at CERN

Linear Collider TPC with 160 GridPixes Test e-beam at DESY

First Timepix3-based GridPix

New ASIC (Timepix3) overcomes its predecessor's limitations:

- Multihit readout
- Simultaneous charge and time measurement of each pixel
- Improved time resolution: $\sim 1.56\,\mathrm{ns}$

Here test results will be shown for a single chip detector with a source and in a laser setup

7 cm 7 cm 17 mm

Detector

Field shaping inside

Guard electrode and GridPix

Harry van der Graaf (Nikhef)

First Timepix3-based GridPix—It works!

Laser setup

- Pulsed UV nitrogen laser (Nikhef)
- Wavelength: 337 nm
- Pulse duration: 1 ns

- Energy: few µJ
- Divergence near diffraction limit

Harry van der Graaf (Nikhef)

GridPix detector with TPX3 ASIC

2017-05-25 7 / 15

Laser setup

- Ionisation enhanced by traces of TMPD (tetra-methyl-phenylene-diamine)
- Ionisation confined to focal point by double photon absorption
- Laser intensity adjusted such that only single electron hits per pixel occur
- Focus point inside detector

Laser measurements—Examples

- About 10 hits per laser pulse
- 960 laser pulses per spot
- Measured spot size dominated by diffusion. About 5 pixels (standard deviation) in the example on the right.

- "T2K TPC gas" $Ar : CF_4 : iC_4H_{10}$ (95 : 3 : 2)
- $V_{\rm grid} = -330 \,\mathrm{V}, \, E_{\rm drift} = 200 \,\mathrm{V \, cm^{-1}}$

Drift velocity

- Measure time of arrival for different laser heights
- We do not know the absolute trigger time-offset, but we only need time differences
- Small detail: arrival time depends on charge. Solution: Different offset for each time-over-threshold (ToT) bin.¹

$$\chi^{2} = \sum_{ToT} \sum_{n} \left(\frac{t[ToT, n] - (t_{0}[ToT] + x[n] / v_{\text{drift}})}{\sigma[ToT, n]} \right)^{2}$$

- Minimising gives $v_{\text{drift}} = 66.480(7) \, \mu \text{m ns}^{-1}$
- Magboltz: $v_{\text{drift}} = 72.819(7) \, \mu \text{m ns}^{-1}$

¹Time-over-threshold is linearly related to charge

Harry van der Graaf (<u>Nikhef</u>)

Diffusion coefficients

- Measure laser spot variance for different laser heights (dominated by diffusion)
- 3.5×10^5 laser pulses per point

$$\sigma_{\rm T}^2 = D_{\rm T} \left(x - x_{\rm grid} \right) + \frac{1}{12} \left(55 \,\mu{\rm m} \right)^2$$
$$\sigma_{\rm L}^2 = D_{\rm L} \left(x - x_{\rm grid} \right) + \sigma_{\rm L,0}^2$$

- Grid at $x_{\text{grid}} = 7.886(22) \,\text{mm}$
- Transverse-diffusion coefficient $\sqrt{D_T} = 309.0(22) \,\mu\text{m}/\sqrt{\text{cm}}$ (Magboltz: 316(4) $\mu\text{m}/\sqrt{\text{cm}}$)
- Longitudinal-diffusion coefficient $\sqrt{D_L} = 254.1(27) \,\mu\text{m}/\sqrt{\text{cm}}$ (Magboltz: 245(3) $\mu\text{m}/\sqrt{\text{cm}}$)

ToA distribution, x=16mm and ToT>0.5µs

• Small additional contribution to the time resolution of $\sigma_{\rm L,0} \approx 2\,{\rm ns}$

Scanning a grid of points

Drift distance: 7.114(22) mm, Dashed rectangle indicates points used in fit

- 1. Laser spots on edge have cut outs
- 2. Pixels have low yield
- 3. Field cage is not uniform at level $100\text{--}200\,\mu\mathrm{m}$
- *residual column = measured column expected column

Residual row [mm]

- 4. Grid not well attached
- 5. E-field not uniform due to guard-chip distance

Scanning a grid of points—Residuals

Points in selected region:

All points that are not cut off:

Conclusions

- Realised GridPix detector with Timepix3 ASIC
- We operated it using T2K TPC gas and $V_{\rm grid} = -330 \,\mathrm{V}, E_{\rm drift} = 200 \,\mathrm{V \, cm^{-1}}$
- We used a laser to perform measurements
 - Transverse resolution dominated by diffusion, $\sqrt{D_{\rm T}} = 309.0(22)\,\mu{\rm m}/\sqrt{{\rm cm}}$ (Magboltz: $316(4)\,\mu{\rm m}/\sqrt{{\rm cm}}$)
 - Longitudinal resolution possibly also affected by timewalk, $\sqrt{D_L} = 254.1(27) \,\mu\text{m}/\sqrt{\text{cm}}$ (Magboltz: 245(3) $\mu\text{m}/\sqrt{\text{cm}}$)
 - $v_{\rm drift} = 66.480(7)\,\mu{\rm m\,ns^{-1}}$ (Magboltz: 72.819(7) $\mu{\rm m\,ns^{-1}}$)
 - $\bullet\,$ Precision in column×row plane better than 25 μm in central area
- Test beam with electrons planned at ELSA in Bonn
- Next detector: Quad (4 chips)

Plans new module

Long term plan:

- Built a LCTPC-module with about 100 GridPixes
- $\bullet\,$ Module size: $22\times17\,\mathrm{mm}^2\mathrm{--keystone}$ shaped

Short term plan:

- Start with a module equipped with 1 or 2 of the small units
- Currently: Quads, designed to minimise the dead area

Quad assembly

2017-05-25

15 / 15

Harry van der Graaf (Nikhef)

Backup—Scanning a grid of points

*residual column = measured column – expected column Harry van der Graaf (Nikhef) GridPix detector with TPX3 ASIC