Characterisation of Hamamatsu silicon photomultiplier arrays for the LHCb Scintillating Fibre Tracker Upgrade

> TIPP 2017 22-26 June, Beijing

Presented by Axel Kuonen EPFL Lausanne, Switzerland On behalf of the LHCb SciFi Tracker group

ÉCOLE POLYTECHNIQUE Fédérale <u>de lausanne</u>

Outline

- LHCb Upgrade and the Scintillating Fiber Tracker (SciFi) project
- Silicon photomultipliers (SiPMs) and the measurement of its characteristics
- SiPM challenges in the context of the LHCb SciFi Tracker

Related talks at TIPP 2017:

- SciFi A large Scintillating Fibre Tracker for LHCb, by Ulrich Uwer -> Tuesday
- A readout ASIC for the LHCb Scintillating Fibre (SciFi) tracker, by Xiaoxue Han -> Tuesday

The LHCb Upgrade and the Scintillating Fiber Tracker (SciFi) project

The LHCb Upgrade

LHCb will collect data until the LS2 (2019). Parts of the current detector will be replaced

Goal:

- raise the operational luminosity to improve the measurements with higher statistics (integrated luminosity ≈ 50 fb⁻¹)
- improve the trigger efficiency:
 - Replace Level-0 hardware trigger (1MHz) by a software trigger (40MHz).
 - New sub-detectors, front-end electronics in particular, must be compatible with 40 MHz readout.

LHCb Tracking upgrade:

- New VELO, Si-pixel
- New Upstream tracker (UT), Si-strip
- SciFi Tracker, scintillating fibres

The LHCb SciFi Tracker

Requirements:

- Hit detection efficiency higher than 98%
- Spatial resolution better than 100µm
- 40MHz readout without dead time
- Operation in radiation environment, fibres 35 kGy and SiPMs $6x10^{11}$ 1MeV n_{eo}/cm² (with neutron shielding) + 100 Gy ionising dose
- Low material with X/X0≤1% per detection layer

plane

-						
			ų÷,		24	7

SiPM:

- SiPM multichannel array from Hamamatsu S13552-HRQ
- 128 channels per arrays, 104 pixels per channel
- 57x62µm² pixels, channel size is 0.25x1.62mm²

Related talks at TIPP 2017:

 SciFi - A large Scintillating Fibre Tracker for LHCb, by Ulrich Uwer -> Tuesday afternoon

SciFi SiPM general characteristics

Correlated noise

- Direct cross-talk: pixel to pixel cross-talk, fully correlated with primary avalanche -> Signal amplitude between 1Photoelectron (PE) and 2PE
- Delayed cross-talk: delayed in time but with full amplitude, strongly correlated with the primary avalanche
 Signal amplitude is 1PE
- 3. After-pulse: due to an avalanche in the same pixel as the primary avalanche

-> Signal amplitude is given by the pixel recovery state

Time (s)

Correlated noise

Goal:

Over-voltage dependent characterisation of after-pulse, direct and delayed crosstalk.

This requires a breakdown voltage (V_{BD}) determination at the moment of the measurement

Pulse shape

We distinguish three types time constants:

- τ_{short} : < 1ns (measurement affected by DAQ bandwidth)
- τ_{slow} : ~50ns, estimated by fitting the slow component
- $\tau_{recovery}$: ~70 ns, obtained from the fit of the "after-pulses" amplitude vs time

1ns

0.5

0

12

-0.5

0.3

Oscilloscope Signal [V] 0.25 0.2 0.15 0.1 0.1

0.05

-0.05

-0.1

0

Pulse time constant

Goal:

Measure time constants of pulse shape and recovery time of the pixel

Pulse shape analysis

Instrumentation

Use fast (1GHz) oscilloscope with fast preamplifier (2GHz, x10 or x100) to record waveforms

Method

- The trigger is set to 0.5PE to record a sample of ~2000 dark counts events for off-line analysis
- Calculation of V_{BD} by fitting the triggered pulse amplitude for every bias value
- Analysis is performed with a threshold based peak finding and selection algorithm
- Pulse shape is obtained by fitting the selected pulse

Photo detection efficiency

SiPM challenges in the context of the LHCb SciFi Tracker

Low light – high noise ?! How can it work ?

Challenges:

- The fibre light output for particle crossing far from SiPM (2.5m) is about 14PE.
- The dark count rate (the DCR is due to thermal noise) and therefore the noise cluster rate (NCR) produced by the SiPM is dramatically increased due to the radiation damage.

Solutions:

- SiPM are cooled down to -40°C to reduce the DCR by a factor 2 every 10°C
- Fast readout electronics to reduce random overlap from consecutive dark pulses (20-25ns integration time)
- Combining signals from different channels to clusters and use the cluster information for efficient noise rejection.

4.5PE

lost signal

Irradiation studies

- Expected dose at the end of lifetime is 6*10¹¹ 1MeV n_{eq}/cm²
- Detectors are regularly sent for irradiation to Ljubljana (irradiation dose controlled with pin diode)

Method:

- Annealing at 35°C during one week after irradiation
- T varied from 20 to -50°C, monitored by a T sensor mounted below the SiPM array
- Measurement (by automated multiplexer, covering 128 channels) of :
 - IV curves
 - DCR, from the recorded current:

$$f_{DCR} = \frac{I}{G \cdot e}$$

as a function of dose and T

Clustering and noise cluster rate

Clustering Motivation:

- Clusters are a good criteria for signal/noise separation. DCR is a random occurrence per channel while the signal is grouped
- Mean hit position calculation
- Data reduction. Only one position value for a cluster is saved

The noise cluster rate (NCR) is the number of cluster generated from noise (DCR+correlated noise)

NCR is calculated for 128 channels read out at a frequency of 40MHz:

 $NCR = N_{NC}/N_{ev} \times 40MHz$

Irradiation studies summary

ΔV = 3.5V SPIROC	H2016_HRQ	
DCR 6*10 ¹¹ N _{eq} /cm ² per channel	14.3 MHz	
Correlated noise	5.5% Direct & delayed	
NCR/128 ch.	50.8MHz	
NCR/ch.	0.4MHz	

Irrad level [10 ¹¹ N _{eq} /cm ²]	H2016_HRQ [MHz] @ΔV=3.5V	
	SPIROC 67ns	PACIFIC 20ns
3	11.4	0.093
6	50.8	0.845
12	157.9*	4.056

*noise saturation: noise clusters merge which reduces artificially the NCR

23/05/17

Summary

Characteristics @ ΔV = 3.5V	H2016_HRQ
Direct x-talk	3%
Delayed x-talk	2.5%
After-pulse	0%
Peak PDE @ 475nm	48%
Recovery time	69ns
Long component	50ns
Short component	<1ns
DCR @6x10 ¹¹ n _{eq} /cm ² , -40°C	14.3MHz

- We have presented a generic method that can be applied to many other SiPM applications to fully characterise and quantitatively analyse the SiPM response.
- High performant SiPMs arrays from Hamamatsu with 128 channels, high PDE (48%), low correlated noise and fast recovery time are obtained.
- For the operation in the radiation environment, single photon detection capability can be retained up to 6*10¹¹N_{eq}/cm² by cooling to -40°C, fast integration and shaping of the signal.

Thank you for your attention !

Backup slides

SciFi SiPM characteristics

Characteristic at operation point ΔV=3.5V and 25°C	H2016 High quench resistor Hamamatsu S13552-HRQ*
Breakdown voltage	51.0V±250mV on chip±500mV series
Gain	4x10 ⁶ e⁻/ph
Temperature coefficient	53.7mV/K
Mean quench resistor	490kΩ
Peak photo detection efficiency	48%

* Detector selected for the SciFi

- Breakdown voltage (V_{BD}) is the voltage where amplification sets in. The over-voltage is defined by: $\Delta V = V_{bias} V_{BD}$
- V_{BD} is **temperature dependent** and is changing by 53.7mV/K. Typical gain variation for 1K at ΔV =3.5V is 1.5%
- The **quench resistor** stops the avalanche. A higher quench resistor value increases the overall stability of the detector (stable at higher over-voltage)
- The photo detection efficiency is the ratio between the number of detected photons and the number of incident photons. It is the product of three factors: fill factor (depend of the pixel size), quantum efficiency and the avalanche probability (depend of ΔV).

Breakdown voltage determination

Pulse shape analysis for H2016_HRQ

After-pulse H2015
After-pulse H2016_HRQ
Delayed cross-talk H2016_HRQ
Delayed cross-talk H2016_HRQ

Correlated noise arrival time

<10⁻⁶

0.18 0.2

Time[s]

0.16

DCR as a function of T for 3 different ΔV

Temperature dependence and $T_{1/2}$

Clusterisation

Light yield measurement

The light yield at the different irradiation levels are similar as for example here at 3.5V. One can observes higher noise cluster sum at higher irradiation

Summary

Characteristics $\Delta V = 3.5V$	H2016_HRQ	H2015
V _{bd} at 25°C	$51.0V \pm 250$ mV on chip ± 500 mV series	$52.2V \pm 200$ mV on chip
Temperature coefficient	53.7mV/K	60mV/K
Gain area	$3.8 \cdot 10^{6}$	$3.25 \cdot 10^{6}$
Gain current	$4.0 \cdot 10^{6}$	$3.6 \cdot 10^{6}$
Direct cross-talk	3%	4.5%
Delayed cross-talk	2.5%	5.5%
After-pulse	0%	6.5%
Peak PDE	48%	47% [6]
Max PDE wavelength	450nm	480nm
Light Yield	26.0	27.7 photons
Mean R _Q at 25°C	$490 \mathrm{k}\Omega \pm 1 \mathrm{k}\Omega$	$210 \mathrm{k}\Omega \pm 5 \mathrm{k}\Omega$
Mean R _Q at -40°C	TBD	$225 \mathrm{k}\Omega \pm 5 \mathrm{k}\Omega$
Recovery time ($\tau_{recovery}$)	69ns	35ns
Long component (τ_{slow}) at 25°C	50ns	40ns
Short component (τ_{short}) at 25°C	<1ns	<1ns
DCR, $6 \cdot 10^{11} n_{eq} / cm^2$, -40°C	14.3 MHz	15.0 MHz
T _{1/2}	10°C	10°C