

MoBiKID Kinetic Inductance Detectors for up-coming B-mode satellite experiments

TIPP'17 - BEIJING

Angelo Cruciani INFN, Sezione di Roma

Dawn of the universe: where are we?

Looking into the CMB for a proof of the Inflation — E < 0 — E > 0 **→** B < 0 **→** / B > 0 /

... B-mode polarization anisotropies are THE KEY!

Angelo Cruciani

Primordial B-mode polarization anisotropies

Interest in CMB is growing in paritcle physics community....

Large Scales Polarization Explorer

- PI: P. de Bernardis (Sapienza & INFN)
 CO-I: F. Gatti (Università di Genova & INFN)
- Goal: Reionization peak down to r=0.03
- Method:
 - Polar night flight (balloon)
 - Large angular scales (25% sky)
 - Frequency coverage 40-250GHz
 - Multimoded TES bolometers

Aiola, et al. Proc of SPIE (2012)

COrE : Cosmic Origin Explorer

A satellite mission for B-modes proposed to last ESA M calls (from Lagrangian point L2)

Scientific motivation was recognized as very strong.

On the other hand the maturity of detectors was considered not sufficient.

Space detector state of the art: PLANCK Bolometers

- Spiderweb bolometers
- Germanium termistor
- Excellent sensitivity
- NOT multiplexable!

PLANCK focal plane ~ 40 pixels

Angelo Cruciani

Kinetic Inductance Detectors (KIDs)

Cooper pairs (CP) in a superconductor act as an inductance (*L*). Absorbed photons change cp density and *L*.

High quality factor (*Q*) resonating circuit biased with a microwave (GHz): Signal from amplitude and phase shift.

LeKID: a « 3 in 1 » detector

S. Doyle et al., JLTP 151 (2008)

KID's evolution

- Detector concept and its demonstration in 2003 (Caltech)
- NIKA realized first observations on sky with KIDs in 2010 (Neel / CNRS)
- Different experiments are developing KIDs for balloon-borne telescope (e.g. BLAST, OLIMPO, ...)
- Further tests are needed to demonstrate the suitability for space missions

Pictures from New IRAM KID Array (NIKA) Monfardini, et al., APJS 194 (2011)

The challenge: Comsic Rays sensitivity

- CRs at L2 are mainly 200 MeV protons
- Rate about 5 cm⁻² s⁻¹
- Their energy deposit into the substrate is 150 keV

Issues: 1. Dead time (high energy release)2. Data contamination (low energy release)

Cosmic Rays sensitivity (2)

$$\sigma = \frac{NEP \sqrt{\tau}}{\eta} = \frac{5 \ 10^{-18} \ \text{W}/\sqrt{Hz} \ \text{*}\sqrt{2 \ ms}}{\eta} = \frac{1.5 \ eV}{\eta} \parallel$$

LEKID could be more severely affected due to the size of the sensor, that corresponds with the whole absorber

Typical efficiency η could range between 0.05 % and 3-4 %, depending on incident position and geometry of the device

POSSIBLE COINCIDENCES BETWEEN MANY PIXELS

LEKID DESIGN S. Doyle et al., JLTP 151 (2008)

First measurements

(Swenson, Cruciani, et al. APL, 2010; Cruciani et al., JLTP 167, 2012)

This issue could be extremely significant

Dead time =
$$r \cdot S \cdot (5\tau) \approx 25 \%$$

How to tackle the issue?

1. Definition of a solid methodology to quantify the problem

Realisation of a testbed and a dedicated pipeline to characterize particle sensitivity of KIDs

2. Identification and test of solutions

MoBiKID

MoBiKID is a small R&D project (2.5 years, 150 k€), supported by INFN in collaboration with IFN-CNR

The project started in April 2016

Main goals:

- Realization of a low background (0.1-1 pW) testbed for mmwave KIDs for space
- Study of the effect of Cosmic Rays on KIDs in «space» conditions

CALDER synergy (1)

The status and results of CALDER will be shown by N. Casali tomorrow.

Capability to estimate absorbed energy and to measure efficiency with accuracy better than 20 %

Cardani et al. , APL 107 (2015)

CALDER synergy (2)

Study of the different time-scales:

Lifetime of QPs is interpreted as the main decay time of the pulse

Cruciani et al, JLTP (2016)

KIDs cryogenic facility @ Roma

A new TRITON 200 dilution refrigerator, dedicated to mm-wave and UV-VIS KIDs (10 mK, exp. room: 24 x 40 cm) Installed in October 2016

4 RF lines

2 cryogenic amplifiers (CITLF3 and ASU)

We realized a test-bed to simulate mm-wave optical signals in low-background conditions

Design and fabrication of the first array (1)

Design and fabrication of the first array (2)

150 GHz array (132 pixels)

Angelo Cruciani

Array characterisation

80 % of detectors inside the bandwodth

> Q = (70 +/- 20) k simulated Q_c= 90 k

Array characterisation (2)

NIXA readout:

electronics board developed at LPSC (Grenoble) 100 MHz bandwidth, 80 channels @ 1kHz 12 channels @ 0.5-2 MHz

Bourrion, ... Cruciani, et al, JINST 6 (2011) P06012

Array characterisation (3) Noise spectrum

Hints of the presence of TLS NOISE

Mm-wave signal

About 50 fW signal

NEP is of the order of 10⁻¹⁷ W/Hz^{0.5}

- Array improvements (better resonance spacing and Q dispersion)
- Cosmic ray test
- Realization of detectors using membranes and different GPs

BACK-UP SLIDES

CALDER synergy (3)

Detector response to optical pulses

Detectors are illuminated using a 400 nm fast LED at 293 K, coupled with an optical fiber.

Pulses can be generated with energies down to few tens eV and duration < us

Cruciani et al, JLTP (2016)