The Development of a 3D Imaging Calorimeter for DAMPE **Yunlong** Zhang USTC On behalf of DAMPE collaboration

Outline

DArk Matter Particle Explorer of China

>3D Imaging BGO Calorimeter

Calorimeter Design and Assembly

≻Calibration

>The performance in space

≻Summary

2017/5/25

Dark Matter

Space Particle Explorer

DArk Matter Particle Explorer (DAMPE)

Science, 20 May 2011

NEWS & ANALYSIS

SPACE SCIENCE

Chinese Academy Takes Space Under Its Wing

LOFTY AMBITIONS

Mission	Chief scientist	Goals	Estimated launch
нхмт	Li Tipei, CAS Institute of High Energy Physics and Tsinghua University	Survey of x-ray sources; detailed observations of known objects	2014
Shijian-10	Hu Wenrui, CAS Institute of Mechanics	Study physical and biological systems in microgravity and strong radiation environment	Early 2015
KuaFu Project	William Liu, Canadian Space Agency and CAS Center for Space Science and Applied Research	Study solar influence on space weather	Mid-2015
Dark Matter Satellite	Chang Jin, CAS Purple Mountain Observatory	Search for dark matter; study cosmic ray acceleration	Late 2015
Quantum Science Satellite	Pan Jianwei, University of Science and Technology of China	Quantum key distribution for secure communication; long- distance quantum entanglement	2016

Strategic Priority Research Program in Space Science

- 500km orbit
- e+/-,gamma-rays
- 5GeV to 10TeV
- 1.5%@800GeV
- Total weight:~1400kg

DArk Matter Particle Explorer (DAMPE)

- Neutron Detector
 - Plastic scintillator with Boron

3D Imaging BGO Calorimeter

- 14 layers of 22 BGO crystals
 - Dimension of BGO bar: $2.5 \times 2.5 \times 60$ cm³
 - Hodoscopic stacking alternating orthogonal layers
 - r.l: ~32X₀
 - NIL:1.6
- Two PMTs coupled with each BGO crystal bar in two ends
- Electronics boards attached to each side of module

Calorimeter Elements

Asymmetry of BGO Bar

The light yieldThe Asymmetry

The BGO Crystal Bars

The High Dynamic Readout Design

- In order to measure 5GeV to 10TeV e,γ-ray
- Each BGO element readout should cover the dynamic range from 10MeV to 2TeV
- One PMT with 3 dynodes output method has been developed

~20% of energy deposition in ONE BGO crystal

2017/5/25

The High Dynamic Readout Design

LED Calibration Schematically

The dynamic range

Front End Electronics

Front End Electronic Boards

Calorimeter Assembly

Carbon Fiber Structure

BGO crystal install

PMT install

Cable arrange

Cable connector

BGO Cal

2017/5/25

The Energy Calibration

Beam Test in CERN

- PS: protons Momentum 24 GeV/c, Secondary hadrons and electrons
- SPS: protons Momentum 400GeV/c, Secondary hadrons and electrons, Pure electrons from 5GeV to 300GeV

BGO CAL Response to High Energy e

2017/5/25

Electron Energy Rec (SPS)

5, 10, 20, 50, 100, 149, 197, 243 GeV electrons

2017/5/25

Energy linear Response

Lunched in 12.17.2015

DAMPE in Space

Event Trigger Rate

The Data Analysis Flow

calibration

Event Selection

- High Energy Trigger
- Hits number in ECAL
- Forward of View events
- Shower axis within fiducial volume

Energy Deposition in BGO calorimeter

e/p separation with ECAL

e/p separation with ECAL

2017/5/25

Template fit (TeVs)

6.9% proton contamination at ~90% electron efficiency

Signal /background = 299/2443 Chi²/ndf: 89.8/61

e+/- candidates

Summary

- An Imaging 3D BGO Calorimeter was built for DAMPE in the past several years
- The performance of the calorimeter is very good
- The instrumentation works very well in space
- The DAMPE opens a new window to the TeV energy range

THANKS