Scattering studies with the DATURA beam telescope

Probing Highland & applications

Jan Dreyling-Eschweiler, <u>Hendrik Jansen</u> Paul Schuetze, Simon Spannagel

The DATURA beam telescope

- Used extensively in sensor R&D
- Located at DESY TB hall 21
- Six Mimosa26 sensors
- NI-based DAQ system
- EUDET Trigger Logic Unit
 - Input: 4 scintillators
 - Output: Trigger to DAQ systems
- Connect multiple DUTs or additional reference sensors
- Available: x-y-phi stage for Device Under Test (DUT)

Goal:

- \rightarrow Measure electron tracks passing DUTs
- → Perform track fits for multitude of studies

e⁻ beam

Mimosa 26 pixel sensors

- AMS 350 nm CMOS
- Dimensions:
 - 10 mm x 20 mm / 50 um
 - 18.4 um x 18.4 um
 - 1152 x 576 pixels
- HR epitaxial layer of 20 um thickness
- Binary read-out (no charge information)
- Theoretical binary resolution: 5.3 um
- Measured intrinsic resolution: 3.24 um * (mean CS = 3.28 \$)
- Protected by 25 um Kapton on each side
- Material budget of sensor plus Kapton: $\epsilon_{M26} = x / X_0 = 7.5e-4$

2016)

nsen

ansen

Measurement geometry

- Plane spacing dz = 20 mm, dz_{SUT} = 15 mm
- Total material budget telescope: ϵ (M26 + air) = 4.8e-3

Data analysis flow

Analysis done with EUTelescope *

- Conversion of Mimosa26 raw data to LCIO format
- Hot pixel search
- Cluster formation, remove clusters with hot pixels
- Construct triplets for up- and downstream plane
- Isolation cut on triplets

TIPP1

DESY

- Match up- and downstream triplets in the centre
 - \rightarrow *six-tuple* from physical track
- Feed six-tuple to Millepede for alignment

* http://eutelescope.web.cern.ch/

General Broken Lines

- GBL track model allows for kinks at scatterers
- Calculating corrections to an initial simple seed track
- Perform χ² minimisation to find track parameters
- Simple track model:
 no bremsstrahlung, no non-Gaussian tails, no non-linear effects
- Inputs: *Measurement* + *error*, geometry, scattering estimate
- Outputs: residuals, residual width, kinks, track resolution

V. Blobel, C. Kleinwort, and F. Meier. Fast alignment of a complex tracking detector using advanced track models. Computer Physics Communications, 182(9):1760 – 1763, 2011.

C. Kleinwort. General broken lines as advanced track fitting method. Nucl. Instr. Meth. Phys. Res. A, 673:107–110, May 2012.

Multiple scattering

• Variance predicted by Highland at a single scatterer:

$$\Theta_0^2 = \left(\frac{13.6 \text{ MeV}}{\beta cp} \cdot z\right)^2 \cdot \varepsilon \cdot (1 + 0.038 \cdot \ln(\varepsilon))^2$$

For a composition of scatterers

$$\varepsilon = \sum \varepsilon_i$$

Highland predicts variance after *last* scatterer

 For individual scatterer within composition:

$$\Theta_{0,i}^2 \equiv \frac{\varepsilon_i}{\varepsilon} \cdot \Theta_0^2 = \left(\frac{13.6 \text{ MeV}}{\beta cp} \cdot z\right)^2 \cdot \varepsilon_i \cdot (1 + 0.038 \cdot \ln(\varepsilon))^2$$

DES

Unbiased kinks

- Last slides: scatterers of *known* material budget \rightarrow constrained kink angle in χ^2 (biased)
- Goal: kink for unknown scatterer (unbiased)
 - → introduce free local parameters in track model
 - \rightarrow dedicated track model for unbiased kinks

Targets and measurements

- Homogeneous targets
 - aluminium sheets of thicknesses: empty, 25 , 50 , 100, 200, 1000 um
 - energies: 1 5 GeV
- Inhomogeneous target
 coaxial connector
 - CUANIAI CUIMECIUI

- Excellent angular resolution ^y
 → measure kink angle precisely
 → calculate material budget
- Excellent position resolution
 - \rightarrow measure impact position on sample
 - \rightarrow position-resolved material budget

Kink angles

preliminary

- Kink angle distribution for various energies
- Measurable difference for 100 um aluminium
- Clear energydependence
- → Large statistics
 → populated tails

Kink angles II

- Measurement of aluminium includes "empty measurement"
 → apply correction
- → Results within ~10% of Highland prediction for 1 – 3 GeV
- Energy-dependence to be understood (work in progress)
- Method yields reasonable kink estimates

2D analysis – events

- Map of homogeneous sample 1 GeV, 1 mm alu
- Beam spot at centre of sample

2D analysis – mean

- 2D map of homogeneous sample 1 GeV, 1 mm alu
- Mean values of bins mostly ~zero

2D analysis – width

- 2D map of homogeneous sample 1 GeV, 1 mm alu
- Mean values of bins mostly ~zero
- Widths of bins show slight trend from left \rightarrow right

2D analysis – width II

- 2D map of homogeneous sample 1 GeV, 1 mm alu
- Mean values of bins mostly ~zero
- Widths of bins show slight trend from left \rightarrow right

2D analysis – width II

- 2D map of homogeneous sample 1 GeV, 1 mm alu
- Mean values of bins mostly ~zero lacksquare
- Widths of bins show slight trend from left \rightarrow right

Can we resolve structured samples?
 → electron-illuminated a coax connector

• Can we resolve structured samples? \rightarrow electron-illuminated a coax connector

Can we resolve structured samples?
 → electron-illuminated a coax connector

Can we resolve structured samples?
 → electron-illuminated a coax connector

Potential

$$\Theta_0^2 = \left(\frac{13.6 \text{ MeV}}{\beta cp} \cdot z\right)^2 \cdot \varepsilon \cdot (1 + 0.038 \cdot \ln(\varepsilon))^2$$

- For known thickness, homogeneous sample
 - measure kink width
 - \rightarrow for known E \rightarrow calculate X₀ from Highland
 - → for known X_0 → measure beam E to %-level
 - measure position-resolved kink width
 - → probe homogeneity of measurement for corrections
- For inhomogeneous sample
 - measure position-resolved kink width
 - \rightarrow material budget map
- For sample with `internal structure'
 - measure position-resolved kink width
 - repeat for different sample angles
 - \rightarrow Tomography

Conclusion

- Performed scattering study with DATURA beam telescope
- Precise tool:
 - few um track resolution
 - few tens urad angular resolution of kinks
- Implemented GBL tracking with dedicated track model for unbiased kink angle
- Measure position-resolved material budget
- Large range of applications

Dedicated BTTB workshop for test beam users

If you publish your analysis with a EUDET-type beam telescope, please cite: Hendrik Jansen, et al., "Performance of the EUDET-type beam telescopes", EPJ Techn Instrum (2016) 3: 7, https://doi.org/10.1140/epjti/s40485-016-0033-2

6th Beam Telescopes and Test Beams Workshop

Zurich, Switzerland

January $16^{th} - 19^{th}$, 2018

cern egroup: BeamTelescopesAndTestBeams-Announcements@cern.ch

bttb-ws@desy.de

Back-up

A word on thick scatterers

- Assume a non-homogeneous scatterer along z
- Describe with three parameters: length s, mean s, variance Δ s2

$$\theta^2 = \sum_i \theta_i^2, \ \overline{s} = \frac{1}{\theta^2} \sum_i s_i \theta_i^2, \ \Delta s^2 = \frac{1}{\theta^2} \sum_i (s_i - \overline{s})^2 \theta_i^2$$

- Find a toy scatterer composed of two thin scatterers resembling the thick scatterer; $s_1, s_2, \Theta_1, \Theta_2$.
 - e.g. for homogeneous scatterer

$$-s_1 = s - d/sqrt(12)$$

$$-s_2 = \overline{s} + d/sqrt(12)$$

$$-\Theta_1 = \Theta_2 = \Theta/2$$

- e.g. for inhomogeneous scatterer

$$s_1 = s_0, \quad s_2 = \overline{s} + \frac{\Delta s^2}{\overline{s} - s_1}, \quad \theta_1^2 = \theta^2 \frac{\Delta s^2}{\Delta s^2 + (\overline{s} - s_1)^2}, \quad \theta_2^2 = \theta^2 \frac{(\overline{s} - s_1)^2}{\Delta s^2 + (\overline{s} - s_1)^2}$$

7

 $\Theta_1 \Theta_2 \Theta_3$

d

Offline analysis and reconstruction

- EUTelescope is based on the ILCSoft framework:
 - generic data model (LCIO)
 - geometry description (GEAR)
 - central event processor (Marlin)
- Marlin allows for modular composition of analysis chain
- Build-in job submission framework
- Steering of analysis via XML files loaded at runtime
- EUTelescope provides processors for full track reco including:
 - Alignment with Millepede-II
 - General Broken Lines track fitter
 - many more

Biased residuals III

 \rightarrow Average intrinsic resolution: $\,\sigma_{\rm M26} = (3.24\,\pm\,0.09)\,\,\mu{\rm m}$

Multiple scattering

• Average deflection predicted by Highland

$$\Theta_{0} = \frac{13.6 \,\mathrm{MeV}}{\beta c p} \cdot z \sqrt{\varepsilon} \cdot (1 + 0.038 \ln{(\varepsilon)})$$

- Literature offers other models, too, HL most popular
- Distribution assumed to be Gaussian centrally
- Non-Gaussian tails
- MS and intrinsic resolution defines track resolution, i.e. uncertainty in space of a track along the track

Biased residuals and pulls

- Biased residual = (measurement fit) including all 6 planes
- Normalise residual by expected residual width

$$\mathrm{pull}_\mathrm{b} \equiv p_\mathrm{b} = \frac{r_\mathrm{b}}{\sqrt{\sigma_\mathrm{int}^2 - \sigma_\mathrm{t,b}^2}}$$
 Prediction from GBL

- Pull is N(0,1) if
 - estimate for intrinsic resolution matches true value
 - material budget and scattering is accurately described
 - \rightarrow **Iterate** track fit with updated σ_{int} and $\sigma_{t,b}$ using the pull width
 - \rightarrow pull_b \rightarrow N(0,1) and σ_{int} converges against true value
 - \rightarrow Use results from narrow and wide set-up for cross validation

Biased residuals

Quoted is a Gaussian width (95%), but actually RMS is within 1% of this value

Kink angles II

Measurement of aluminium includes "empty measurement"
 → apply correction

Jansen et al. 31

Track cleaning

- Cut on tracks: prob < 0.01 (0.1) for 20 mm (150 mm)
 model less valid for larger amount of material budget
- Use robust statistics (down-weighting of out-layers) only if you don't have enough data (and if you know what you are doing)
- If track collection is not cleaned, "bad" tracks affect the measured intr. reso.

Prob biased vs unbiased

Residuals

- Residual = Measurement Fit
- Biased (use all measurements) and unbiased (leave one out) tracks are different!

Use track fits for residual and pull distribution

$$r_{\rm u}^2(z) = \sigma_{\rm int}^2(z) - \sigma_{\rm t,b}^2(z)$$
$$r_{\rm u}^2(z) = \sigma_{\rm int}^2(z) + \sigma_{\rm t,u}^2(z)$$

Pulls

• Normalise residual by expected residual width

$$\text{pull}_{\text{b}} \equiv p_{\text{b}} = \frac{r_{\text{b}}}{\sqrt{\sigma_{\text{int}}^2 - \sigma_{\text{t,b}}^2}}$$

- Pull is N(0,1) if
 - estimate for intrinsic resolution matches true value
 - material budget and scattering is accurately described
 - \rightarrow **Iterate** track fit with updated σ_{int} using the pull width
 - \rightarrow pull_b \rightarrow N(0,1) and σ_{int} converges against true value
 - → Use results from narrow and wide set-up for cross validation

Pulls and track resolution

• Normalise residual by expected residual width

$$\text{pull}_{\mathbf{u}} \equiv p_{\mathbf{u}} = \frac{r_{\mathbf{u}}}{\sqrt{\sigma_{\text{int}}^2 + \sigma_{\text{t},\mathbf{u}}^2}}$$

Pull is N(0,1) if

- estimate for intrinsic resolution matches true value
- material budget is accurate
- deflection due to multiple Coulomb scattering is accurately described
- \rightarrow repeat track fit varying σ_{int} by pull width
- \rightarrow pull \rightarrow N(0,1) and σ_{int} converges

TIPP17 | 25.5.17 | **Hendrik Jansen et al.** 37

\rightarrow Increase σ_{int} by 6%, re-fit the tracks

DÈŚY

Pulls and track resolution II

• One example of an iteration step:

Pulls and track resolution III

• Residual estimate as function of intr. resolution:

- Systematics and unprased nack reso. of the latively equal
- But $\sigma_{t,b} < \sigma_{t,u}$
 - → absolute error smaller
 - \rightarrow what about the residual?

$$\text{pull}_{\text{b}} \equiv p_{\text{b}} = \frac{r_{\text{b}}}{\sqrt{\sigma_{\text{int}}^2 - \sigma_{\text{t,b}}^2}}$$

Intrinsic resolution

- The iterative method converges i.e. estimator for $\sigma_{\mbox{\scriptsize int}}$ converges against the true value
- We find energy independent value of

 $\sigma_{int} = 3.24 + 0.5\%$ (stat.) + 3% (syst.) (cf.last slide)

- Control sys. uncert. further by comparing set-ups
- Increases for lower thresholds (more noise hits)
- Increases for higher thresholds (smaller clusters)
- Optimum is 5 6, probably a tune of 5.5

Systematics

• Estimate systematic uncertainties of intrinsic resolution based on the input uncertainties

			$\sigma_{\sigma_{ m int}}$ in %			n %	
				per plane			$\sqrt{\sum (x_i)^2}$
			E	Θ_0	fit range	$\mathrm{rms}(p_{\mathrm{b}})$	
			$\pm 5\%$	$\pm 3\%$	$\pm 1 \text{std.}$		
$6{ m GeV}$	$20 \mathrm{~mm}$	biased	-0.34 + 0.21	$+0.08 \\ -0.28$	$^{+1.76}_{-1.27}$	1.57	2.6
		unbiased	$-0.43 \\ +0.71$	$+0.44 \\ -0.25$	$-0.93 \\ -1.00$	1.23	1.8
	$150 \mathrm{~mm}$	biased	-3.5 + 2.9	$^{+1.95}_{-2.60}$	$+6.4 \\ -5.4$	1.51	7.9
		unbiased	-4.80 + 5.43	$+2.97 \\ -4.13$	$-5.29 \\ +3.11$	0.75	8.7
$2{ m GeV}$	$20 \mathrm{~mm}$	biased	-1.56 +1.13	$+0.65 \\ -1.22$	$+0.23 \\ +0.33$	3.1	3.7
		unbiased	-1.67 + 1.21	$^{+0.92}_{-1.10}$	-2.15 + 1.35	1.94	3.1
	$150 \mathrm{~mm}$	biased	-10.5 + 15.7	$^{+10.2}_{-6.59}$	$\substack{+8.0\\+0.82}$	0.82	20.3
		unbiased	-17.5 +24.9	$+14.9 \\ -15.2$	$^{-23.9}_{+25.1}$	1.03	38.5

Threshold dependency

Towards higher threshold: → cut signal → smaller clustersize → worse resolution

Towards lower threshold: \rightarrow more noise hits \rightarrow worse resolution

→ Optimum at threshold 5 to 6

Track resolution predictions

• Using 6 planes, assuming DUT in the centre

Track resolution predictions

• Using 6 planes, assuming DUT in the centre

Track resolution predictions

- Using 6 planes, assuming DUT in the centre
- Wide set-up offers superior track resolution with thicker DUTs and vice versa.
- Intersection is function of material budget
 - → Optimise resolution prior to your test beam

Looking even closer ...

Fold occurrence into one pixel for intra-pixel studies

→ Density of recon. track
 position is non-uniform,
 it depends on cluster size
 → Populated areas differ in size
 → Resolution is CS dependent
 → Calculate differential
 intrinsic resolution

Looking even closer ...

Fold occurrence into one pixel for intra-pixel studies

→ Density of recon. track
 position is non-uniform,
 it depends on cluster size
 → Populated areas differ in size
 → Resolution is CS dependent
 → Calculate differential
 intrinsic resolution

GBL intra-pixel occurrence of CS1-4

Looking even closer ...

DESY

- Repeat iterative pull method for each cluster size

 → differential intrinsic resolution
- Resulting $\sigma_x vs x$ within a pixel per cluster size:

CS1: 3.60 μm CS2: 3.16 μm CS3: 2.86 μm CS4: 3.40 μm CS5: 2.53 μm CS6: 2.70 μm CS6: 4.17 μm

- Repeat iterative pull method differentially for each clustersize
 → differential intrinsic resolution
- Resulting σ_x vs x within a pixel per clustersize:

CS1: 3.60 μm CS2: 3.16 μm CS3: 2.86 μm CS4: 3.40 μm CS5: 2.53 μm CS6: 2.70 μm CS>6: 4.17 μm

- Repeat iterative pull method differentially for each clustersize
 → differential intrinsic resolution
- Resulting σ_x vs x within a pixel per clustersize:

CS1: 3.60 μm CS2: 3.16 μm CS3: 2.86 μm CS4: 3.40 μm CS5: 2.53 μm CS6: 2.70 μm CS>6: 4.17 μm

- Repeat iterative pull method for each cluster size

 → differential intrinsic resolution
- Resulting σ_x vs x within a pixel per cluster size:

Horizontal beam spread

• After spectral magnet

The deflection angle θ for particles with an energy between 2.95 and 3.05 GeV

