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The DATURA beam telescope
● Used extensively in sensor R&D

● Located at DESY TB hall 21

● Six Mimosa26 sensors

● NI-based DAQ system

● EUDET Trigger Logic Unit
- Input: 4 scintillators
- Output: Trigger to DAQ systems

● Connect multiple DUTs or additional reference sensors

● Available: x-y-phi stage for Device Under Test (DUT)

     Goal:
→ Measure electron tracks passing DUTs
→ Perform track fits for multitude of studies

e- beam
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Mimosa 26 pixel sensors
● AMS 350 nm CMOS

● Dimensions:
- 10 mm x 20 mm / 50 um 
- 18.4 um x 18.4 um
- 1152 x 576 pixels

● HR epitaxial layer 
of 20 um thickness

● Binary read-out (no charge information)

● Theoretical binary resolution: 5.3 um

● Measured intrinsic resolution: 3.24 um * (mean CS = 3.28 $)

● Protected by 25 um Kapton on each side

● Material budget of sensor plus Kapton: εM26 = x / X0 = 7.5e-4
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Measurement geometry
● Plane spacing dz = 20 mm, dzSUT = 15 mm

● Total material budget telescope: ε(M26 + air) = 4.8e-3

DOWNSTREAMUPSTREAM
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Data analysis flow
Analysis done with EUTelescope *

● Conversion of Mimosa26 raw data to LCIO format

● Hot pixel search

● Cluster formation, remove clusters with hot pixels

● Construct triplets for up- and 
downstream plane

● Isolation cut on triplets

● Match up- and downstream 
triplets in the centre

→ six-tuple from physical track

● Feed six-tuple to Millepede for alignment

accepted

rejected

* http://eutelescope.web.cern.ch/
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General Broken Lines
● GBL track model allows 

for kinks at scatterers

● Calculating corrections to an 
initial simple seed track

● Perform χ2 minimisation to 
find track parameters

● Simple track model: 
no bremsstrahlung, no non-Gaussian tails, no non-linear effects

● Inputs: Measurement + error, geometry, scattering estimate

● Outputs: residuals, residual width, kinks, track resolution

V. Blobel, C. Kleinwort, and F. Meier. Fast alignment of a complex tracking detector using advanced track 
models. Computer Physics Communications, 182(9):1760 – 1763, 2011. 

C. Kleinwort. General broken lines as advanced track fitting method. Nucl. Instr. Meth. Phys. Res. A, 
673:107–110, May 2012.
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Multiple scattering
● Variance predicted by Highland at a single scatterer:

● For a composition of scatterers

   Highland predicts variance after last scatterer

● For individual scatterer 
within composition:
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Unbiased kinks
● Last slides: scatterers of known material budget 

→ constrained kink angle in χ2 (biased)

● Goal: kink for unknown scatterer (unbiased)
→ introduce free local parameters in track model

→ dedicated track model for unbiased kinks
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Targets and measurements
● Homogeneous targets

- aluminium sheets of thicknesses:
empty, 25 , 50 , 100, 200, 1000 um

- energies: 1 – 5 GeV

● Inhomogeneous target
- coaxial connector

● Excellent angular resolution
→ measure kink angle precisely

→ calculate material budget

● Excellent position resolution
→ measure impact position on sample

→ position-resolved material budget
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Kink angles
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0.34 mrad
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● Kink angle 
distribution for 
various energies

➔ Measurable
difference for
100 um aluminium

➔ Clear energy-
dependence

➔ Large statistics
→ populated tails

AIR

preliminary
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Kink angles II
● Measurement of aluminium

 includes “empty measurement”
→ apply correction 

➔ Results within ~10% 
of Highland prediction
for 1 – 3 GeV

➔ Energy-dependence
to be understood
   (work in progress)

➔ Method yields reasonable 
kink estimates

preliminary
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2D analysis – events
● Map of homogeneous sample 1 GeV, 1 mm alu

➔ Beam spot at centre of sample
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2D analysis – mean
● 2D map of homogeneous sample 1 GeV, 1 mm alu

● Mean values of bins mostly ~zero
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2D analysis – width
● 2D map of homogeneous sample 1 GeV, 1 mm alu

● Mean values of bins mostly ~zero

● Widths of bins show slight trend from left → right
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2D analysis – width II
● 2D map of homogeneous sample 1 GeV, 1 mm alu

● Mean values of bins mostly ~zero

● Widths of bins show slight trend from left → right
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2D analysis – width II
● 2D map of homogeneous sample 1 GeV, 1 mm alu

● Mean values of bins mostly ~zero

● Widths of bins show slight trend from left → right
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Inhomogeneous sample
● Can we resolve structured samples?

→ electron-illuminated a coax connector

Chrome plated brass

Nickel plated brass

Teflon
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Inhomogeneous sample
● Can we resolve structured samples?

→ electron-illuminated a coax connector
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Inhomogeneous sample
● Can we resolve structured samples?

→ electron-illuminated a coax connector

Reconstruct tomographic image
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Inhomogeneous sample
● Can we resolve structured samples?

→ electron-illuminated a coax connector

Reconstruct tomographic image

Paul Schuetze, Tuesday 9:36,
R3 Medical Imaging, security 

and other applications
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Potential
● For known thickness, homogeneous sample

- measure kink width 
→ for known E → calculate X0 from Highland
→ for known X0 → measure beam E to %-level

- measure position-resolved kink width 
→ probe homogeneity of measurement 

for corrections

● For inhomogeneous sample
- measure position-resolved kink width
→ material budget map

● For sample with `internal structure’
- measure position-resolved kink width
- repeat for different sample angles

→ Tomography 
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Conclusion
● Performed scattering study with DATURA 

beam telescope

● Precise tool: 
- few um track resolution
- few tens urad angular resolution of kinks

● Implemented GBL tracking with dedicated track model 
for unbiased kink angle

● Measure position-resolved material budget

● Large range of applications

Dedicated BTTB workshop for test beam users

If you publish your analysis with a EUDET-type beam telescope, please cite:
Hendrik Jansen, et al., “Performance of the EUDET-type beam telescopes”, 
EPJ Techn Instrum (2016) 3: 7, https://doi.org/10.1140/epjti/s40485-016-0033-2

https://doi.org/10.1140/epjti/s40485-016-0033-2
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Advertisement

6th Beam Telescopes and Test Beams Workshop

Zurich, Switzerland

January 16th – 19th, 2018

cern egroup: 
BeamTelescopesAndTestBeams-

Announcements@cern.ch 

bttb-ws@desy.de
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Back-up
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A word on thick scatterers
● Assume a non-homogeneous scatterer along z

● Describe with three parameters:
length s, mean s, variance Δs2

● Find a toy scatterer composed of two thin 
scatterers resembling the thick scatterer;
 s1, s2, Θ1, Θ2.
- e.g. for homogeneous scatterer 

- s1 = s – d/sqrt(12)
- s2 = s + d/sqrt(12)
- Θ1 = Θ2 = Θ/2

- e.g. for inhomogeneous scatterer
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Offline analysis and reconstruction
● EUTelescope is based on the ILCSoft framework:

- generic data model (LCIO)
- geometry description (GEAR)
- central event processor (Marlin)

● Marlin allows for modular composition of analysis chain

● Build-in job submission framework

● Steering of analysis via XML files loaded at runtime 

● EUTelescope provides processors for full track reco 
including:
- Alignment with Millepede-II
- General Broken Lines track fitter
- many more
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Biased residuals III

→ Average intrinsic resolution:
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Multiple scattering
● Average deflection predicted by Highland

● Literature offers other models, too, HL most popular

● Distribution assumed to be Gaussian centrally

● Non-Gaussian tails

● MS and intrinsic resolution defines track resolution, i.e. 
uncertainty in space of a track along the track
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Biased residuals and pulls
● Biased residual = (measurement – fit) including all 6 planes

● Normalise residual by expected residual width

● Pull is N(0,1) if 
- estimate for intrinsic resolution matches true value
- material budget and scattering is accurately described

→ Iterate track fit with updated σint and σt,b using the pull width
→ pullb → N(0,1) and σint converges against true value
→ Use results from narrow and wide set-up for cross 

 validation

Prediction from GBL
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Biased residuals

Quoted is a Gaussian width (95%), but actually RMS is within 1% of this value
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Kink angles II
● Measurement of aluminium includes “empty measurement”

→ apply correction 

preliminary
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Track cleaning
● Cut on tracks: prob < 0.01 (0.1) for 20 mm (150 mm)

- model less valid for larger amount of material budget

● Use robust statistics (down-weighting of out-layers) only if you 
don't have enough data (and if you know what you are doing)

● If track collection is not cleaned, “bad” tracks affect the 
measured intr. reso. 
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Prob biased vs unbiased
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Residuals
● Residual = Measurement - Fit

● Biased (use all measurements) and unbiased (leave 
one out) tracks are different!

● Use track fits for residual and pull distribution
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Pulls
● Normalise residual by expected residual width

● Pull is N(0,1) if 
- estimate for intrinsic resolution matches true value
- material budget and scattering is accurately described

→ Iterate track fit with updated σint using the pull width
→ pullb → N(0,1) and σint converges against true value
→ Use results from narrow and wide set-up 
     for cross validation



TIPP17  |  25.5.17  |  Hendrik Jansen et al. 36

Pulls and track resolution
● Normalise residual by expected residual width

Pull is N(0,1) if 
- estimate for intrinsic resolution matches true value
- material budget is accurate
- deflection due to multiple Coulomb scattering is 
accurately described

→ repeat track fit varying σint by pull width
→ pull → N(0,1) and σint converges

+ u

u
uu
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Pulls and track resolution II

● One example of an iteration step:

BIASED UNBIASED

→ Increase σ
int

 by 6%, re-fit the tracks
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Pulls and track resolution III
● Residual estimate as function of intr. resolution:

● Systematics affect unbiased track reso. relatively equal

● But σt,b < σt,u

→ absolute error smaller
→ what about the residual?
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Intrinsic resolution
● The iterative method converges i.e. estimator for σint  

converges against the true value

● We find energy independent value of

σint = 3.24 +- 0.5% (stat.) +- 3% (syst.) (cf.last slide)

● Control sys. uncert. further by comparing set-ups

● Increases for lower thresholds (more noise hits)

● Increases for higher thresholds (smaller clusters)

● Optimum is 5 – 6, probably a tune of 5.5
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Systematics 
● Estimate systematic uncertainties of intrinsic resolution 

 based on the input uncertainties 
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Threshold dependency

Towards higher threshold:
→ cut signal

→ smaller clustersize
→ worse resolution

Towards lower threshold:
→ more noise hits

→ worse resolution

→ Optimum at 
       threshold 5 to 6
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Track resolution predictions
● Using 6 planes, assuming DUT in the centre

z
DUT
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Track resolution predictions
● Using 6 planes, assuming DUT in the centre

     → dz
DUT

 as small as possible               → Thick DUT: use wide set-up
 Thin DUT: use narrow set-up
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Track resolution predictions
● Using 6 planes, 

assuming DUT in the 
centre

● Wide set-up offers 
superior track resolution 
with thicker DUTs and 
vice versa.

● Intersection is function of 
material budget

→ Optimise resolution 
    prior to your test beam
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Looking even closer ...

CS 1

CS 3 CS 4

CS 2

Fold occurrence into one pixel
 for intra-pixel studies

→ Density of recon. track 
position is non-uniform,
 it depends on cluster size
→ Populated areas differ in size
→ Resolution is CS dependent

→ Calculate differential
            intrinsic resolution
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Looking even closer ...

Fold occurrence into one pixel
 for intra-pixel studies

→ Density of recon. track 
position is non-uniform,
 it depends on cluster size
→ Populated areas differ in size
→ Resolution is CS dependent

→ Calculate differential
            intrinsic resolution
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Looking even closer ...

CS 1

CS 3 CS 4

CS 2
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CS-dependent quantities

● Repeat iterative pull method 
for each cluster size 
→ differential intrinsic resolution

CS1:   3.60 μm
CS2:   3.16 μm
CS3:   2.86 μm
CS4:   3.40 μm
CS5:   2.53 μm
CS6:   2.70 μm
CS>6: 4.17 μm

● Resulting σx vs x within a 
pixel per cluster size:

CS = 1
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CS-dependent quantities

● Repeat iterative pull method 
differentially for each clustersize 
→ differential intrinsic resolution

CS1:   3.60 μm
CS2:   3.16 μm
CS3:   2.86 μm
CS4:   3.40 μm
CS5:   2.53 μm
CS6:   2.70 μm
CS>6: 4.17 μm

● Resulting σx vs x within a 
pixel per clustersize:

CS = 2
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CS-dependent quantities

● Repeat iterative pull method 
differentially for each clustersize 
→ differential intrinsic resolution

CS1:   3.60 μm
CS2:   3.16 μm
CS3:   2.86 μm
CS4:   3.40 μm
CS5:   2.53 μm
CS6:   2.70 μm
CS>6: 4.17 μm

● Resulting σx vs x within a 
pixel per clustersize:

CS = 3
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CS-dependent quantities

● Repeat iterative pull method 
for each cluster size 
→ differential intrinsic resolution

CS1:   3.60 μm
CS2:   3.16 μm
CS3:   2.86 μm
CS4:   3.40 μm
CS5:   2.53 μm
CS6:   2.70 μm
CS>6: 4.17 μm

● Resulting σx vs x within a 
pixel per cluster size:

CS = 4
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Horizontal beam spread
● After spectral magnet


