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Background
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electrode

Lead glass



At low primary electron energy, the σ is low and gradually increase to maximum σm at optimum Em, and then 

decreases slowly.

Total reflective secondary electron yield (σ)
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Universal curve of σ

For lead glass, σm is less than 2.5 at the optimum energy of 300 ~ 500 eV.

Em

E1



Experimental

A. Sample preparation
• Aluminum oxide deposited by atomic layer deposition (ALD) technique

• Substrate: N-type silicon

• Thickness：~10 nm (100 AB cycles) 

(by Spectroscopic Ellipsometry )

• Microstructure: amorphous

(by X-ray diffraction)

Schematic illustration of ALD Al2O3 growth process.
Nanoscale Research Letters (2015) 10: 162. 
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B. Pulsed-Yield Measurement

Typical waveform for σ ＞1

 Charge-integration method
 Current-profile method

𝜎 =
 (𝑰𝒄𝒐𝒍. + 𝑰𝒔𝒖𝒑. + 𝑰𝒊𝒏𝒏.) ∙ 𝑑𝑡

 (𝑰𝒄𝒐𝒍. + 𝑰𝒔𝒖𝒑. + 𝑰𝒊𝒏𝒏. ± 𝑰𝒔𝒂𝒎.) ∙ 𝑑𝑡
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Results and discussion

Aluminum oxide characterization

XPS spectra of ALD- Al2O3 Spectroscopic Ellipsometry



Yield vs. pulse No.

50 electron beam pulses with pulse width 20 microseconds, duration 2 seconds

No need neutralization between pulses.
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Yield vs. primary energy
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Yield vs. incident current (charge/pulse)
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We obtain the typical σ curve for aluminum oxide, in good agreement with previous work.
At the same primary energy, there is obvious difference in yield for two sets of incident current. 

Preliminary result Preliminary result



0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

300 eV

Al2O3

Beam

Al2O3

Beam

Al2O3

Beam

Y
ie

ld
 (

σ
)

θ (degree)

180 eV

Yield vs. incident angle θ
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 The yield deviate from the traditional law of 

monotonic increase with the incident angle.

 The critical angle increases with increasing 

primary energy.

① The region of the excited secondary electrons 

is distributed within a certain angle α.

② The smaller the primary electron energy is, 

the larger the angle α is. 

③ With the incident angle increase, the inner 

secondary electrons are closer to the surface. 

When incident angle exceeds the critical angle 

θ0, the total yield does not rise but decreases.

 



Preliminary result



Application
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Gain; Resolution; P/V

MCP assembly configuration  

Primary electron energy
Gap voltage VG

MCPs voltage V1, V2

Nuclear Instruments and Methods in Physics Research A 830 (2016) 438–443

MCP parameters
OD 32.8 mm, Pore Diameter 10 μm, 
Spacing 12 μm, L/d 48:1, Bias angle 12 deg. 



12
Nuclear Instruments and Methods in Physics Research A  (submitted) 

Gain and resolution as functions of primary electron energy

Although bias voltages for coated MCP are 100 eV lower than that of uncoated MCP, the gains of the coated MCP are higher than 

that of uncoated one. This is due to σm is higher for Al2O3 than for the lead glass. The resolution also improves for coated MCP.
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(a) single electron charge spectrum in semi-logarithmic scale; (b) single electron peak in linear scale.

Before coating

After coating
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Challenges Forward

 Advantages of MCP coated with high σ materials 

 Reduce MCP bias voltages.

 Improve gain, resolution and P/V.

 Long lifetime.

 Challenges Forward

 Improve σm of traditional materials.

 Reduce the Em as low as possible.

σm2 σm1

σ



Conclusions and Perspectives
The secondary electron properties of nano-thick aluminum oxide have been studied. 

 There is no need neutralization between pulses for nano-thick sample.

 There is obvious difference in yield for different incident current.

When incident angle exceeds the critical angle, the corresponding total yield does not rise but decreases.

The MCP assembly performance improvement through coating aluminum oxide is investigated.

 The gain, the charge resolution and the peak-to-valley ratio of the MCP detector are significantly improved. 

 Timing and lifetime performance of coated MCP are studied on the way.

There are two possible solutions to further improve the σm with reduced Em of SEY material.

Doping and surface modification for traditional material. 

 Finding alternative materials and still need to do more study. 
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