

Commissioning and Initial Performance of the Belle II iTOP PID Subdetector

Gary Varner University of Hawaii

TIPP 2017 Beijing

Upgrading PID Performance

- PID (π/K) detectors
 - Inside current calorimeter
 - Use less material and allow more tracking volume
 - \rightarrow Available geometry defines form factor

imaging TOP (iTOP)

Concept: Use best of both TOP (timing) and DIRC while fit in Belle PID envelope

NIM A623 (2010) 297-299.

Use new, high-performance MCP-PMTs for sub-50ps single p.e. TTS
Use simultaneous T, θc [measuredpredicted] for maximum K/π separation
Optimize pixel size

TIPP 2017 Beijing

iTOP relativistic velocity

Actual PID is event-by-event

• Test most probable distribution

Beamtest Experiment 2 Run 568 Event 1

Performance Requirements (TOP) Single photon timing for MCP-PMTs

Mechanical constraints

• A highly constrained space

Quartz: procurement, verification

- Bars: 1250 x 450 x 20 mm³ two bars per module
- Mirrors: 100 x 450 x 20 mm³
- Prisms:
 100 mm long, 456 x 20 mm² at bar face expanding to 456 x 50 cm² at MCPPMTs
- Material: Corning 7980
- DIN58927 class 0 material has no inclusions (inclusions ≤0.1 mm diameter are disregarded)
- Grade F (or superior) material having index homogeneity of ≤5 ppm over the clear aperture of the blank; verified at 632.8 nm
- Birefringence / Residual strain ≤1 nm/cm

Quartz gluing, Module Assembly

Optics: alignment, gluing, curing and aging (~2 weeks). Enclosure: gluing CCDs and LEDs, integrating fiber mounts.

QBB: strong back flattening, button & enclosure gluing.

Put on a cart. PMT and frontend integration, performance check. QBB assembly and gas sealing.

Move optics to QBB using the "lifting jig".

iTOP Readout

Readout Verification (pre-install, in-situ)

TIPP 2017 Beijing

Installation (very tight fit)

Installation Complete (May 2016)

TIPP 2017 Beijing

After installation – continued development

0, B-field Cosmic Ray Analysis data/MC nhit distribution

nHit distribution for slot05 (slot05 - slot13)

PMT Rotation Update (2 rotation issues)

 The PMT tube is made of Kovar and suffers ~1 kgf/PMT in 1.5 T (maximum ~1.4 kgf/PMT in ~1.1 T).

Rotation of PMT module

- Large effect on photon transmittance due to bubbles of the optical oil on the Si cookie
- Has been fixed in situ by shimming

off surface is clear. — Wil be fixed if necessary after phase 2 Gap Slot07 PMTmodu

- Effect only for photons of larger

incident angles than \sim 43° if the peel-

Rotation of PMT

Study of physics impact of decoupled PMTs (Modest effect)

Year	2017				2018				2019				2020		
Month	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7
Global schedule					Phas	e 2			Phys	ics ru	un	Phy	sics r	run	
PMT production	Curr	ent p	produ	ictio	n										
			Ano	ther	smal	l pro	ducti	on							
							Mas	s pro	oduct	ion i	f nec	essa	ry		
PMT test															
PMT installation													Ass	y I	nstall

Plan in place to replace ~50% of PMTs

Start-up Schedule/Commissioning

Timebase Calibration

• Took a while to get new FW release, SW work continued

/group/belle2/users/wangxl/iTOP/TBC/DB201612b/xval/. The data of run3523 and run3524 are also processed and skimed, and finally saved at /ghi/fs01/belle2/bdata/group/detector/TOP/Skim-wangxl/2016-12/.

FIG. 1: Example of calculation on Slot_01 ASIC_00. (a) is the shape of time difference (ΔT) of the double pulses in channel_7 from the raw data, (b) is the dime difference after correction, (c) is the project of ΔT after correction and a fit performed to the distribution to show the mean and the resolution of ΔT , (d) shows how the χ^2 values change in the iterations of calculation.

FIG. 2: Summary of calculation results of the 64 ASICs of Slot_01. Plot (a) is means of the time difference of double pulses, and (b) is the time resolution.

Channel-by-channel Timing alignment

• Global timing alignment – laser studies

DATA slot12-r3512: Laser time as a function of pixel (after TB correction, before time alignment)

DATA slot12-r3512: Laser time as a function of pixel (after TB correction, after time alignment)

s12_r3524_calch7:laser time [ns] vs pixel

19

NOTE: Different Time Scales!

Region Of Interest & Feature Extraction

Standard CFD algorithm works well, though performance degrades at low PMT (mandated to mitigate aging effects)

Low PMT Gain Operation

- current feature extraction uses constant fraction discrimination to extract signal timing
- resolution deteriorates at small signal amplitudes
- using laser data from Hawaii test setup
- TProfile to get waveform template
- fit with central Gaussian and exponential tail

 use template fitter to improve resolution at small amplitudes/high noise

Necessary to maximize MCP lifetime Studying how best to implement (Zynq: PS is too slow(?), PL option)

Summary

Belle II TOP Detector coming online

• Present:

- Production Firmware debugging
- > DAQ integration and initial timing alignment
- Global Cosmic Ray Campaign:
 - > Detector alignment
 - > Magnetic field tracking
- First collisions (early 2018):
 - Verify detector alignment
 - Initial PID release

Back-up slides

30kHz L1, high occupancy emulation

30kHz L1 trigger, 10 MHz background photons/PMT, multi-hit, multi-event buffering

Hit Queue Depth: 10 MHz PMT Hit, 50 kHz L1, 400 SSTin Cycles Readout

At 400 SSTin Cycles (~19us per single photon hit), can run at 50kHz, so plenty of margin

Gain and Efficiency

4338

2.645

1.556

10

-Ch. 5

🗕 Ch. 6

🛨 Ch. 7

PMT Replacement

"1x BG"

PERFORMANCE SUMMARIES

Laser Efficiency

Single photon timing

Verification: Event Time Zero

Verification: Event Trigger Time

Direct hitmap

IRSX ASIC Overview

- 8 channels per chip @ 2.8 GSa/s
- Samples stored, 12-bit digitized in groups of 64
- 32k samples per channel (11.6us at 2.8GSa/s)
- Compact ASICs implementation:
 - Trigger comparator and thresholding on chip
 - On chip ADC
 - Multi-hit buffering

Die Photograph

8mm

Laser Calibration steps

- 1. Pedestal subtract
- 2. Correct Amplitude dependence
- 3. Run dT Minimizer, obtain results
- 4. Apply dT values
- All binned, so easily implemented at Look-up tables on the SCROD FPGA
 - Both gain/efficiency and timing data taken at same time
 - About 8 hours per 128 channel board stack

1. Ped subtract & 50% CFD

1. After 50% CFD algorithm

2. Voltage dependence

2. Improved Residual

2. TDC resolution residual

3. After Autocalibration

Output After "dT minimizer" algorithm

S011 C001 A0 Ch0 -- Slip 7, FB=111

Belle II

Production single photon testing

Laser timing: laser_pixel3_0_gain4_HV3201_18may2015

