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The HL-LHC Upgrade = O

From around 2026 onwards LHC instantaneous luminosity will increase by a factor 5 to 7
and integrated luminosities of 3000 fb-! are planned.

A major challenge for the detector design!
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The CMS HL-LHC Upgrades C\MS \/

Trigger/HLT/DAQ
Track information at L1 trigger Barrel EM calorimeter
L1 trigger: 12.5 pm latency - output 750kHz + Replace FE/BE electronics

HLT: output 7.5 kHz Lower operating temperature to 8°C

Muon system

Replace DT & CSC FE/BE
electronics

Complete RPC coverage in
1.5<n<24

Muon tagging 2.4 <n<3

Replace tracker
Rad. tolerant - higher granularity - significant less material
40 MHz selective readout (pt > 2 GeV ) in outer tracker for L1 trigger
Extend coverage ton = 3.8

Replace endcap calorimeters
Rad. tolerant — high granularity
Mitigate pileup — 3D tracking
Operate at -30°C
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Detector Environment

= After the HL-LHC upgrade, the CMS end-cap will operate in an unprecedented

radiation environment
Fluences of up to 10'® neq/cm? and doses of up to 1.5 MGy
Pile-up of up to 200 collisions/crossing

CMS

@)

N

= Use silicon detectors to survive with high granularity and precise timing of ~50ps on

cell level

1MeV neutron equivalent in Silicon, HGC, 3000fb™"
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The CMS HGCal Upgrade s A

0 Key facts:
High granularity throughout the calorimeter
Hexagonal silicon sensors in EE and high-radiation FH & BH
Scintillating tiles with SiPM readout in low-radiation FH & BH

Sensors with W/Cu backing plate and readout PCB built into
modules

Modules will be mounted on cooling plates with electronics
and absorbers to make up cassettes

Goal is ~50 ps timing on cell level for vertex reconstruction/ == #!
pile-up rejection i &Eﬁ |

O Key parameters: f
HGCAL covers 1.5<n <3 Fjg
Full system maintained at -30°C Eﬂ
~ 600 m? of silicon ;
~ 500 m? of scintillators
~ 6M silicon channels, ~0.5 and ~1 cm? cell-size M&/%ﬁ&é

Power at end of life ~120 kW of which ~20% is sensor NN =30
leakage current Mt
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Endcap Electromagnetic calorimeter (EE): Si, Cu & CuW & Pb absorbers, 28 layers, 25 Xo & ~1.3 A
Front Hadronic calorimeter (FH): Si & scintillator, steel absorbers, 12 layers, ~ 3.5 A
Backing Hadronic calorimeter (BH): Si & scintillator, steel absorbers, 12 layers, ~ 5 A
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Why Silicon?

CMS

= Relatively good understanding of and handle on mitigating radiation damage
Can mitigate leakage current noise contribution by cooling to -30°
Can mitigate signal loss by going to thinner sensors and higher bias voltage

= Potential to reach intrinsic time resolution of O(25ps)

= Allows for a compact calorimeter with high granularity

Signal, e/um
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Use thin sensors in the inner most layers, operate cold and at higher voltage.
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Layout ms \/

= Choose silicon sensor thickness according to expected radiation dose
Depending on 120 pm, 200 pm & 300 pum active thickness
Reduce cell size for thinner sensors to keep similar capacitance

= |ntersection and exact geometry between scintillator and silicon regions will be
evaluated in the coming months

SiPM-on-tile is the baseline option (analogous to CALICE AHCAL)
Granularity has to be optimised with respect to physics performance and cost

scintillators

7=16

silicon

Different regions in EE Mockup of a mixed 30° cassette for FH
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CMS, /|
Expected Performance @)

=  Compact design and chosen materials result in narrow showers
Together with high granularity allows for good particle separation and particle flow
Pile up rejection can be done within the first layers

= Good energy resolution
Stochastic term of ~20% and constant term of ~1%
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ompac

Silicon Sensors B (@)

= Hexagonal geometry as largest tile-able polygon
6” and 8” sensors considered
Cell sizes of ~0.5 cm? and ~1 cm?

mouse bites calibration cells

Cell capacitance of ~50 pF
Will most likely need n-on-p for inner layers

= Some design goals
1kV sustainability to mitigate radiation damage

Four quadrants to study inter-cell gap distance and
its influence on Vb4, Cint and CCE

= A few more details about those sensors
Active thickness by deep diffusion or thinning

Inner guard ring is grounded, outer guard ring is
floating

Truncated tips, so called mouse bites, for module
mounting contact pads

Calibration cells of smaller size for single MIP
sensitivity at end of life Hamamatsu 6" 128ch design
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Example Results

4
_ ‘Compact Muon Solenoid

= X/
lower leakage currents
) in the calibration cells mouse bites & calibration cells
higher leakage currents .
, show lower capacitances than full cells
at the edge region .
(smaller size)
guard ring valde scgled by 0.1 -
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IV and CV example measurements done with probe card plus external switching unit
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: CMS,|
Module Integration p. | D)

= Preliminary module design is as following
First, the sensor is glued unto W/Cu baseplate covered with Au/Kapton foil
Then, the readout PCB is glued unto the sensor
Wire bonds through holes in the PCB connect readout board to sensor cells

= Per hole in the PCB, we can connect to 3 cells compared to 4 with squares
Makes routing more difficult. Investigating sensor design features that could help.

Glued stack of baseplate,
kapton, sensor and 2 PCBs

module design readout PCB wire bonds
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Front End Readout > X @)

=  Requirements LSB
Large dynamic range of 0.4 fC to 10 pC
Low power budget of 10 mW/channel

ADC

Timing information with 50 ps accuracy Charge
Low noise of ~ 2ke T 100fC 0 er
High radiation resistance ol
ADC and ToT
= Baseline - N
TSMC 130nm technology S Di”
ToA with 50 ps binning for timing Laca W Conr |

ToT with 12 bit for 0.1 to 10 pC
ADC with 10 bit for 0 to 0.1 pC

Large buffers to accommodate 12.5 ps o

latency of L1 trigger s

= Status Qm g
Skiroc2CMS designed for testbeam

First HGROC version to be submitted by
mid 2017

v
L1 Buffer R;:;ir::t ~ Global
—> — % readout
@40 MHz @LI rate Euley

16 (8) trigger cells
L. Truncation Trigger
Digital / Global
> > Compressi;

readout
“or9) /

J Trigger path

VFE layout

For more information see talk by Johan Borg at Thursday 11h in the R3 session.
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Trigger

Front End

» HGROC reduces granularity and
energy resolution

» (Concentrator selects a fraction of
trigger cells from several modules

HGCAL Backend
Clustering of energies
Build 2D cluster
Link 3D clusters

CMS Backend

» Combination with other CMS
subdetectors

» L1 trigger decision

TPG Layer 1
~10-50 Tb/s

TPG Layer 2 Track Trigger
~2 Tb/s

Correlator

Global Trigger

For more information see talk by Johan Borg at Thursday 11h in the R3 session.
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: : CMS
Mechanical Design i \/

Pb absorber

rather than in sectors B
Better physics performance as there are no gaps/ "™ eerae ———
Overla S PCB sensor !:(::;:7
p . Cuw basse:)late /
Assembly was evaluated to be easier

= Absorber structure will be built in full disks Stain'ess-steemad\

~24 mm
Cu cooling plate ———

Costs slightly lower

Mechanical strength and feasibility has been
demonstrated with adequate safety factor

= Absorber material will be

Lead in steel mantle for EE
Steel for FH and BH
Plus some Cu and W from base and cooling plates

=  Cassettes with active modules
Integrated into absorber structure for EE
Inserted into absorber structures for FH+BH

preliminary cassette design
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Testbeam & Prototyping

= Several testbeams at FNAL and CERN with up to
16 HGCAL modules in 2016

=  Proof of concept of the baseline design with a
closely spaced stack of modules
Test the design of a compact detector module with
the proposed wire-bonding scheme
Learn what can go wrong

Reach good agreement between simulation
and experiment

Module prototype for testbeam

CERN: 250 GeV electrons passing through 27 X,

=  Many properties studied _ |
Pedestal and noise stability 250 Gev |
MIP calibration and S/N T
Response to electrons |
Energy, position and time resolution 3%

= Another intensive period planned for 2017!

12X, 15X,

b ] R
Ty TN Ty 5

17X, 19X, 21X,

Event display from CERN TB

For more information see talk by Francesco Romeo today 14h20 in the R1 session.
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Outlook

CMS

@)

N

Basic design of the detector has been validated and we are making good progress

towards the final design and construction of a highly granular silicon calorimeter
We benefitted a lot from the work of CALICE and ILC/CLIC communities

TDR will be written at the end of 2017 with many design choices to be made until then

A lot of work is being done and has already been done to guide these decisions
A fast growing, international community is essential to this effort!

ENDCAP CALORIMETER HIGL LEVEL

MILESTONES TIMELINE

2016 2017 2018 2019

2020

2021

2022

2023

2024 2025

2026

Ql Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

ENDCAP CALORIMETER STAGES TDR Sub. 11/17 ¢ EDR07/20 ¢ Instal. at P5 08/25 and 09/25 ¢ ¢4
ENCAP COMPONENTS Design - demo. Engin. - proto. NPre-prod. Prod.

INTEGRATION ENDCAP 1 Integ. Com. Float Com.
INTEGRATION ENDCAP 2 Integ. Com. Float Com.
MECHANICAL STRUCTURES

Overall Design EN.3 ¢

EE structure EN.2 ¢ EN.5 ¢ EN.7 ¢

BH-FH structure EN.1 ¢ EN.4 ¢ EN.5 o EN.6 ¢

EE AND FH

Sensors Sl.le sl.2 SI3 ¢ Sl4 o

FE ASICS FE.1/2 ¢ FE.3 ¢ FE. EES5) FE6 ¢ FE.7 ¢

Electronics system EL1 ¢ EL2 EL3¢ EL4 ¢

Modules MO.1 ¢ MO.2 1 MO.3¢ #gMO.4

Cassettes 1e CS24 eCs3 CS.44

BE electronics and trigger BE1 ¢ e§BE.2/3

Power Supplies PS.1¢ PS.2 ¢

BH

BH active element BH.1 ¢ OEI;Z BH.3 ¢ BH.A4 ¢

BH FE electronics BH. BH.6¢ BH.7 ¢

COOLING I‘

Cooling Plant for P5 co. C0.2

Florian Pitters (CERN)
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CMS Today @)

Hadronic Calorimeter (HCAL)

Solenoid magnet

Muon chambers

N2 gy
* >
ECAL) / ‘\ - ’

Tracker

Electromagnetic Calorimeter (

Total weight : 14000 tonnes i

Overall diameter : 15.0 m y
Overall length :28.7m

Magnetic field :38T
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Effects on Current Endcap (?MS (D)

= Current endcap is made of PbWO4 crystals

= Radiation damage results in deteriorated signal yield
Formation of colour centres that cause light absorption
Laser monitoring mitigates this but only to a certain point
Energy resolution constant term after 3000 fb-! expected to be ~9%

y CMS preliminary EE SLitrani + MARS Simulation

o o e Py W s o U Fota
) CMS ECAL ~ B o
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_ \\ —-:slau .EIC
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1 O_1 \\\ \ ?
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signal loss with eta energy resolution after 3000fb™" for current EC
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Detector Challenge I: Pile Up

CMS

= HL upgrade will result in up to 200 collisions per bunch crossing (from ~50)
For the HL-LHC baseline option, vertex density increases by a factor ~8

Effects on vertex reconstruction, track purity, jet energy reconstruction ...

= Can be mitigated with excellent time resolution and high granularity
If beam is sliced in O(25 ps), vertex density is reduced to the level of 50 coll./bunch crossing
Design calorimeter for particle flow algorithms to aid particle separation

GE
T/pT ">

GE
/PIT)/<p

o(p

0

decrease of jet energy resolution with PU
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Detector Challenge II: Radiation [~ Y

= After the HL-LHC upgrade, the CMS end-cap will operate in an unprecedented
radiation environment
Fluences of up to 10'® neq/cm? and doses of up to 1.5 MGy

= Will need very radiation hard detector material and readout
Strong dependency on |n| and |Z| suggest that design can vary with exact location

-1
1MeV neutron equivalent in Silicon, HGC, 3000fb" Dose to HGC, 3000fb

i i RN e 1e+17 1e+07
250 [L ~ 1e+06
1e+16
200 e 100000
— 1e+15 §
§ 150 s 10000
o c
100 levld g 1000
TR
50 1e+13 100
0 = : 1e+12 10
550 -500 -450 -400 -350 -300 -550 -500 -450 -400 -350 -300
CMS FLUKA geometry v.3.7.2.0 Z [cm] CMS FLUKA geometry v.3.7.2.0 Z [cm]
expected hadron fluences expected total dose
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Particle Flow Principle

= Particle Flow Analysis aims to improve energy
resolution by resolving the showers of the
individual particles in a jet by combining
information from various detectors
Link tracks and clusters

Utilise e.g. momentum measurement from
tracks for charged hadrons for energy
measurement

Summing up energies is replaced by a TMVA
problem

= Needs technology that allows high granularity
and fast timing to distinguish shower
components

Lots of R&D by CALICE for linear collider
detectors (CLIC, ILC)

Si/W ECAL, Sci/Fe HCAL, analog vs digital
energy information, etc.

CMS

100 GeV Jet

neutral hadron

T~

charged hadron

Visualisation from PandoraPFA
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Particle Flow in CMS

CMS

Oom im 2m im
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon
Silicon AINIRARS
Tracker L
oke interspersed N ;
Transverse slice chambers et i
through CMS l IE:
- N : . A
Silicon Tracker Electromagnetic Hadron Calorimeter Muon Chambers
. Calorimeter
Position, momentum
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Particle Flow in HGCAL

Electron Efficiency

o
o

CMS

Algorithms still far from optimised but already able to recovery run 1 performance
Electron identification

o
o™

—

Jet energy resolution

N
—
(0]
<

o
o

0.2

electron efficiency
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Module Assembly > %

I/ N/
l«C
= Automatic gantry now ready at UCSB
Throughput of around 20 modules/day/assembly site is estimated
(2) Glue is dispensed on the kapton (3) Tool picks up the sensor
covered baseplate
lh‘:.\ "):A! ‘g - |
e~ ey “ “ P o 4 (4) Sensor is placed on
? - the baseplate
_— L
(1) Module baseplate is vacuum ' j s L 'lﬂ’
chucked during assembly = . o '
.
1y ‘
(5) External Vacuum holds the ki S b
module during overnight curing " ‘ P e
s
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Sensor Testing | (?MS D)

= To test the sensor IV and CV characteristics under
realistic conditions, one needs to bias all sensor
cells during the tests.

Electric field configuration determines Voq and
changes drastically with floating cells.

Use probe card to contact and bias all cells at the
same time.

Spring loaded pins, so called pogo pins, to control
uniform contact.

=  Depending on the sensor layout, we need to probe
between 128 and 512 channels.

Use a switching matrix to measure them one after the
other

To avoid a large and clumsy system, integrate the
components as much as possible

=  Therefore, a high performant and fully integrated CAD drawings of the assembled cards.
switching matrix has been designed as a plugin Pogo pins can be seen in the top
card that sits directly on top of the probe card. picture.
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Sensor Testing 11 = Y

= Some details of the system
Low leakage current of ~10 pA

Low parasitic capacitances of ~ 80pF @ 50kHz in
total, including traces on the probe card

Can handle 512 input channels

Avoid hundred of coax cables from probe card to
external switching matrix

= Integration into existing probestation via mounting
frame that allows to adjust parallelism of cards to
sensor/chuck

Picture of the full setup installed at CERN.
It is being tested and characterised right now.
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Testb Resul B @)
estbeam Results )
= Qverall performance with Skiroc2 readout o c
Pedestals found to be stable over time e Matd” i © B - © 1l
For MIPs we have S/N ~ 7.4 for 200pm 7
L1:5.05X0
Energy recovery of fraction lost in thick s,
absorbers via dE/dx weighting . e
Shower development matches simulation ) — o oo
L8 :27.07Xo
CMS Preliminary CMS Preliminary CMS Preliminary_
o T A 03Ty g 2500 e T 00GeV
2600" t C ] ] ‘ : ] = - —%8e¥
~ o i ~ B i - . e
P Noise ~ 2.4 ADC 57 0.25 5X,-27 X, . = 2000k i —100GeV
Bs500[- MIP ~ 17 ADC E - —— data GeV § 2 r o :§g882¥
' S/IN ~ 7.4 T 02} —— data Mip (noweights){ | R -
ao0- » : : & 1500] :
0.15} ] N : '
o 3 ] 1000~y ;
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S ] - » ;
0.05 bt ] 5001 i
- T : i . S
07\\\\ - p— p— p— p— p— p— \\\7 _II I.III.I I:III.I:I: elll ||.||—
0 50 100 150 200 250 300 350 400 % 5 10 15 30

beam energy GeV

S/N for MIPs

Energy resolution
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. , CMS
Time Resolution ~ \/

= Measure the intrinsic time resolution one can obtain from planar silicon sensors in
a calorimeter environment (intrinsically large signals!).
25 cells of a HGCAL module readout via a 5Gs/s digitiser
MCP with At ~ 5ps as reference timer

= Testbeam at FNAL with up to 32 GeV electrons
Cell level time resolution ~25ps
Improve to cluster level time resolution ~15ps
Many subtle effects that have to be taken care of
Same setup last year at CERN with up to 250 GeV electrons

Analysis ongoing —~180F
c F o o0=15.2+0.4ps
< 160F CMS Preliminary
o L
S 'k
2x2 mm? DRS4 CAEN VME o 140
scintillator trlgger board (Model > F
V1742) @120
E 100;—
80—
Beam dlrectlon Photek 240 60;—
reference timer (t,) 401~
Absorber 20
(Lead /Tungsten) HGC special timing layer = L N
815 0.1 -0.05 0 0.05 0.1 0.15

At e (NS)
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