Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Alignment of the CMS Tracker at LHC Run-II Technology and Instrumentation in Particle Physics Beijing 2017

Patrick L.S. Connor

on behalf of the CMS collaboration

Deutsches Elektronen-Synchrotron

22 May 2017

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

1 Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

2 Implementation

Alignables Weak modes Time variations

3 Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

6 Back-up

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Tracker alignment at CMS

Largest silicon tracker in the world!

Purpose: reconstruct trajectories

Until end of 2016:

	units	hit resolution
pixel	1440	$9\mu{ m m}$
strip	15148	$20-60\mu\mathrm{m}$

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary References

Back-up

Tracker alignment at CMS

Largest silicon tracker in the world!

Purpose: reconstruct trajectories

Until end of 2016:

	units	hit resolution
pixel	1440	$9\mu{ m m}$
strip	15148	$20-60\mu\mathrm{m}$

(during mounting of the tracker)

Typically, the precision at mounting is such that

$$\sigma_{\mathsf{align}} \gg \sigma_{\mathsf{hit}}$$

Compute a correction to the mounting of the modules such that

 $\sigma_{\rm align} \approx \sigma_{\rm hit}$

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based

Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

A picture of the challenge

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based

approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

position

A picture of the challenge

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

- position
- rotation

A picture of the challenge

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

position

- rotation
- curvature

A picture of the challenge

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

position

- rotation
- curvature
- $\longrightarrow O(10^5)$ parameters

A picture of the challenge

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

4/19

A picture of the challenge

- position
- rotation
- curvature
- $\longrightarrow O(10^5)$ parameters

Patrick Connor

Introduction

Tracker alignment at CMS

A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

4/19

A picture of the challenge

- position
- rotation
- curvature

 $\longrightarrow O(10^5)$ parameters

In addition, tracks are **distorted** by the misalignment.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge

Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Linearisation of least-square minimisation of the track fit [1, 2]

$$\chi^{2}(\mathbf{p},\mathbf{q}) = \sum_{j}^{\text{tracks hits}} \sum_{i}^{\text{hits}} \left(\frac{m_{ij} - f_{ij}(\mathbf{p},\mathbf{q}_{j})}{\sigma_{ij}}\right)^{2}$$

- ${\bf p}$ stands for the alignment parameters and ${\bf q}$ for the track parameters,
- $\bullet~{\bf m}$ stands for the measurements and ${\bf f}$ for the predictions,
- and σ stands for the uncertainties.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge

Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Track-based approach Linearisation of least-square minimisation of the track fit [1, 2]

$$\chi^{2}(\mathbf{p},\mathbf{q}) = \sum_{j}^{\text{tracks hits}} \sum_{i}^{\text{hits}} \left(\frac{m_{ij} - f_{ij}(\mathbf{p},\mathbf{q}_{j})}{\sigma_{ij}}\right)^{2}$$

- ${f p}$ stands for the alignment parameters and ${f q}$ for the track parameters,
- ullet m stands for the measurements and f for the predictions,
- and σ stands for the uncertainties.

MillePede-II

- global-fit approach (large linear equation system)
 - minimise residuals and refit the tracks together
 - take into account all correlations
 - demanding in term of memory

NB: MillePede-II is an project independent from CMS [3].

- HipPy local-fit approach
 - remove track parameters from the χ^2
 - iterative procedure
 - used for fine tuning

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

1 Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

2 Implementation

Alignables Weak modes Time variations

3 Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary Reference

6 Back-up

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables

Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up


```
Alignables
```

- Several levels of alignment:
 - high-level structures (O(1 mm))
 - \longrightarrow when the statistics is limited
 - modules ($O(10\,\mu{\rm m})$)
 - \longrightarrow requires larger statistics
 - \rightarrow alignables
- positions, rotations and deformations can be aligned

 → all parameters of alignables can be activated separately

(Sketch of the barrel and forward pixel subdetectors)

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Weak modes

Definition

A weak mode is any transformation such that $\Delta\chi^2\sim 0$

Patrick Connor

Definition

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

A weak mode is any transformation such that $\Delta \chi^2 \sim 0$ i.e. it is a transformation that changes *valid* tracks into *other valid* tracks

Weak modes

Patrick Connor

Definition

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

A weak mode is any transformation such that $\Delta\chi^2\sim 0$

i.e. it is a transformation that changes valid tracks into other valid tracks

 \longrightarrow detector and track topology are symmetric

Weak modes

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Definition

A weak mode is any transformation such that $\Delta \chi^2 \sim 0$ i.e. it is a transformation that changes *valid* tracks into *other valid* tracks \longrightarrow detector and track topology are symmetric

Examples

Telescope

Weak modes

(plots from N. Bartosik's thesis)

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Definition

A weak mode is any transformation such that $\Delta \chi^2 \sim 0$ i.e. it is a transformation that changes *valid* tracks into *other valid* tracks \longrightarrow detector and track topology are symmetric

Examples

Telescope

Weak modes

(plots from N. Bartosik's thesis)

Solution

cosmic rays other topology

 $Z \to \mu \mu\,$ momentum constraint on the two outgoing muons

Patrick Connor

٠

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Magnet cycles:

Time variations

magnetic field may be switched off for maintenance reasons

 \longrightarrow mostly affects the large mechanical structures

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Time variations

• Magnet cycles:

magnetic field may be switched off for maintenance reasons \longrightarrow mostly affects the large mechanical structures

• Temperature variations:

cooling operations after long shutdown

 \longrightarrow sensitive effect at module level as well

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Time variations

• Magnet cycles:

magnetic field may be switched off for maintenance reasons \longrightarrow mostly affects the large mechanical structures

- Temperature variations: cooling operations after long shutdown → sensitive effect at module level as well
- Ageing of the modules:
 - high-radiation environment
 - \longrightarrow Lorentz drift inside of the silicon modules

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time

Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

9/19

Time variations

• Magnet cycles:

magnetic field may be switched off for maintenance reasons \longrightarrow mostly affects the large mechanical structures

Temperature variations:

cooling operations after long shutdown

- \longrightarrow sensitive effect at module level as well
- Ageing of the modules: high-radiation environment
 - $\xrightarrow{}$ Lorentz drift inside of the silicon modules

∜

Align separately:

- *absolute* positions of **high-level structures** with time-dependence;
- *relative* position of **modules** to the high-level structure without time-dependence.
- \longrightarrow include time dependence but keep large statistics

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

1 Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

2 Implementation

Alignables Weak modes Time variations

3 Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary References

6 Back-up

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration

Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment
 - \longrightarrow possible thanks to high statistics of $Z\longrightarrow \mu\mu$ and cosmic rays.

Configuration

• Determine global alignment with four iterations with MP \longrightarrow in case of large corrections, linear approximation of χ^2 is limited.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration

Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment
 - \longrightarrow possible thanks to high statistics of $Z\longrightarrow \mu\mu$ and cosmic rays.

Configuration

• Determine global alignment with four iterations with MP \rightarrow in case of large corrections, linear approximation of χ^2 is limited.

dataset	#tracks	weight
minimum-bias tracks	13M	0.2 – 0.3
isolated muons	53M	0.25
$Z \longrightarrow \mu \mu$	32M	1.0
cosmic rays	3M	2.5

 \longrightarrow large statistics of minimum-bias events is available ${\bf but}$ limited statistics of cosmic-rays and $Z\to \mu\mu$ data

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration

Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment
 - \longrightarrow possible thanks to high statistics of $Z\longrightarrow \mu\mu$ and cosmic rays.

Configuration

• Determine global alignment with four iterations with MP \rightarrow in case of large corrections, linear approximation of χ^2 is limited.

dataset	#tracks	weight
minimum-bias tracks	13M	0.2 – 0.3
isolated muons	53M	0.25
$Z \longrightarrow \mu \mu$	32M	1.0
cosmic rays	3M	2.5

 \longrightarrow large statistics of minimum-bias events is available ${\rm but}$ limited statistics of cosmic-rays and $Z\to \mu\mu$ data

 Improve local precision with fifteen iterations with HipPy → fine tuning.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration

Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

11/19

We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment
 - \longrightarrow possible thanks to high statistics of $Z\longrightarrow \mu\mu$ and cosmic rays.

Configuration

• Determine global alignment with four iterations with MP \rightarrow in case of large corrections, linear approximation of χ^2 is limited.

dataset	#tracks	weight
minimum-bias tracks	13M	0.2 – 0.3
isolated muons	53M	0.25
$Z \longrightarrow \mu \mu$	32M	1.0
cosmic rays	3M	2.5

- \longrightarrow large statistics of minimum-bias events is available **but** limited statistics of cosmic-rays and $Z \to \mu\mu$ data
 - Improve local precision with fifteen iterations with HipPy \longrightarrow fine tuning.
- Note: $150\,\mathrm{GB}$ of RAM and around $30\,\mathrm{h}$ are needed to run MillePede

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker

Geometry comparison Validation

Summary

References

Back-up

Structure of the tracker

- PXB PiXel Barrel
- PXF PiXel Forward
- TIB Tracker Inner Barrel

- **TOB** Tracker Outer Barrel
 - TID Tracker Inner Disks
- TEC Tracker Endcaps

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker

Geometry comparison Validation

Summary

References

Back-up

- Each point represents a module; colour is related to the high-level structure.
- One can see the movement $Y(\Delta r, \Delta z, r\Delta \phi)$ of a module initially at position $X(r,z,\phi).$

→ clear movements between the **tracker in data-taking** and **aligned tracker**.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary References

Back-up

In the next slides, we show the effect of the alignment on various physical quantities between

- tracker in data-taking
- aligned tracker

and for reference, we show in addition:

• MC simulation (no misalignment)

Validation

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Distribution of the medians of the residuals

- For each module, the median of the residuals is computed and histogrammed.
- Optimally aligned detector has smallest width
 - \longrightarrow lower limit on width determined by statistical precision.
- Sensitive to local alignment precision.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Distribution of the medians of the residuals

- For each module, the median of the residuals is computed and histogrammed.
- Optimally aligned detector has smallest width

 \longrightarrow lower limit on width determined by statistical precision.

• Sensitive to local alignment precision.

\longrightarrow Improvement in all parts of the subdetector.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Distribution of the medians of the residuals

- For each module, the median of the residuals is computed and histogrammed.
- Optimally aligned detector has smallest width

 \longrightarrow lower limit on width determined by statistical precision.

Sensitive to local alignment precision.

 \longrightarrow Improvement in all parts of the subdetector.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summarv

References

Back-up

(from N. Bartosik's Thesis)

- Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
- E-field and charge carrier mobility change with time.

 \rightarrow Lorentz drift is not constant in time!

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summarv

References

Back-up

(from N. Bartosik's Thesis)

- Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
- E-field and charge carrier mobility change with time.

 \longrightarrow Lorentz drift is not constant in time!

- Distributions of the median of the residuals can be produced separately for modules with electric field pointing in- or outwards. We show here the difference of the respective means $\Delta \mu$ over time.
- Ideal tracker would have $\Delta \mu = 0$.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summarv

References

Back-up

(from N. Bartosik's Thesis)

- Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
- E-field and charge carrier mobility change with time.

 \longrightarrow Lorentz drift is not constant in time!

- Distributions of the median of the residuals can be produced separately for modules with electric field pointing in- or outwards. We show here the difference of the respective means $\Delta \mu$ over time.
- Ideal tracker would have $\Delta \mu = 0$.
- \longrightarrow The difference of the means $\Delta \mu$ in local x direction indicates the **recovery** of Lorentz-angle effects.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

16/19

(from N. Bartosik's Thesis)

- Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
- E-field and charge carrier mobility change with time.

 \longrightarrow Lorentz drift is not constant in time!

Time

- Distributions of the median of the residuals can be produced separately for modules with electric field pointing in- or outwards. We show here the difference of the respective means Δµ over time.
- Ideal tracker would have $\Delta \mu = 0$.
- $\longrightarrow {\rm The \ difference \ of \ the \ means \ } \Delta \mu \ {\rm in \ local \ } x \ {\rm direction \ indicates} \\ {\rm the \ recovery \ of \ Lorentz-angle \ effects.}$

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

- Given N tracks from a vertex, N-1 tracks are used to refit the vertex

 \rightarrow evaluate the distance of the *N*-th track to the refitted vertex $\langle d_{xy} \rangle$ and $\langle d_z \rangle$ as a function of the track ϕ and η .

- Mostly sensitive to movements in pixel subdetector.
- Global patterns suggest systematic misalignments

Primary-vertex validation

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

17/19

- Given N tracks from a vertex, N-1 tracks are used to refit the vertex

 \rightarrow evaluate the distance of the *N*-th track to the refitted vertex $\langle d_{xy} \rangle$ and $\langle d_z \rangle$ as a function of the track ϕ and η .

- Mostly sensitive to movements in pixel subdetector.
- Global patterns suggest systematic misalignments
- \rightarrow here, **movement** in barrel pixel half-shell is **cured**.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

17/19

- Given N tracks from a vertex, N-1 tracks are used to refit the vertex

 \longrightarrow evaluate the distance of the *N*-th track to the refitted vertex $\langle d_{xy} \rangle$ and $\langle d_z \rangle$ as a function of the track ϕ and η .

- Mostly sensitive to movements in pixel subdetector.
- Global patterns suggest systematic misalignments
- \rightarrow here, **movement** in barrel pixel half-shell is **cured**.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

 $Z \rightarrow \mu \mu$ validation

- The mass of the ${\cal Z}$ boson is reconstructed from two outgoing muons.
- The mass can be measured as a function of their kinematics
 → shown here as a function of the azimuthal angle for both
 muons.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

 $Z \rightarrow \mu \mu$ validation

- The mass of the ${\cal Z}$ boson is reconstructed from two outgoing muons.
- The mass can be measured as a function of their kinematics
 → shown here as a function of the azimuthal angle for both
 muons.

 $\rightarrow \phi$ -modulation has been cured.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

 $Z \rightarrow \mu \mu$ validation

- The mass of the ${\cal Z}$ boson is reconstructed from two outgoing muons.
- The mass can be measured as a function of their kinematics
 → shown here as a function of the azimuthal angle for both
 muons.

 $\rightarrow \phi$ -modulation has been cured.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

Summary

- The topic of alignment was introduced:
 - how the challenge is addressed at CMS;
- its implementation at CMS was described:
 - how to deal with the weak modes
 - and how to include movements over time;
- and the performance in 2016 was shown:
 - most elaborate alignment campaign of the largest silicon tracker with around 100M simultaneously refitted tracks in 36 intervals of time;
 - the alignment **precision** in pixel part of order of 10 μ m;
 - and the improvement was presented from various validations with data-driven methods.

Patrick Connor

Introduction

Tracker alignment at CMS A picture of the challenge Track-based approach

Implementation

Alignables Weak modes Time variations

Performance

Configuration Structure of the tracker Geometry comparison Validation

Summary

References

Back-up

19/19

• The topic of alignment was introduced:

- how the challenge is addressed at CMS;
- its implementation at CMS was described:
 - how to deal with the weak modes
 - and how to include movements over time;
- and the performance in 2016 was shown:
 - most elaborate alignment campaign of the largest silicon tracker with around 100M simultaneously refitted tracks in 36 intervals of time;

Summary

- the alignment **precision** in pixel part of order of 10 μ m;
- and the improvement was presented from various validations with data-driven methods.

Thanks a lot!

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

Prompt calibration

CMS Collaboration.

Alignment of the cms silicon tracker during commissioning with cosmic rays. *Journal of Instrumentation*, 5(03):T03009, 2010.

The CMS collaboration.

Alignment of the cms tracker with lhc and cosmic ray data. *Journal of Instrumentation*, 9(06):P06009, 2014.

Volker Blobel and Claus Kleinwort.

A new method for the high-precision alignment of track detectors. Proceedings of the Conference on Adcanced Statistical Techniques in Particle Physics, 2002.

References

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$ validation

Prompt calibration

MillePede Modules DMRs Primary-vertex validation

 $Z \rightarrow \mu \mu$ validation Prompt calibration

Patrick Connor

References

Back-up

MillePede

Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$

validation Prompt calibration

MillePede

• Linearisation of the χ^2 allows to make use of linear algebra:

 $\mathbf{C} \times (\mathbf{\Delta p} \ \mathbf{\Delta q}) = \mathbf{b}$

• Partition of the matrix ${\bf C}$ into blocks for local and global parameters allows to reduce drastically the size of the matrix to invert:

 $\mathbf{C}_{j} \Delta \mathbf{q}_{j} = \mathbf{b}_{j}$ local parameters $\mathbf{C}' \Delta \mathbf{p} = \mathbf{b}'$ global parameters

where b' can be determined from Δq_j and C' from C_j^{-1} and some additional blocks in C describing correlations between local and global parameters

- MillePede = Mille + Pede
 - Mille determination of all the values needed to calculate the global χ^2

 $\longrightarrow {\bf p},\,{\bf q},\,{\bf m},\,\sigma,$ local $\,{\rm d} f/\,{\rm d} {\bf q}$ and global $\,{\rm d} f/\,{\rm d} {\bf p}$ parameters

Pede determination of local (track) refits to construct the limear equation system, then determination of global (alignment) parameters

Patrick Connor

References

Back-up

MillePede Modules

DMRs

Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

calibration

Principle

The Distributions of the medians of the residuals are a measure of the local precision.

DMRs

- Deviations from 0 indicate possible biases.
- The width is also sensitive to the statistics¹.

Procedure

- Each track is reconstructed for different geometries.
- The hit prediction x'_{pred} for each module is obtained from all other track hits. The median of this
- The residuals $x'_{pred} x'_{hit}$ is histogrammed for each module.
- For each high-level structure, the median of the residuals is histogrammed and plotted.

In order to avoid statistical correlations, we use independent samples for alignment and validation.

¹In the next plots, we took care of having comparable statistics for MC and data.

Patrick Connor

References

Back-up

MillePede Modules

DMRs

Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

Prompt calibration

DMRs in BPIX

Patrick Connor

References

Back-up

MillePede Modules

DMRs

Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

Prompt calibration

DMRs in FPIX

Patrick Connor

References

Back-up

MillePede Modules

DMRs

Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

Prompt calibration

DMRs in TIB and TOB

Patrick Connor

References

Back-up

MillePede Modules

DMRs

Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

Prompt calibration

28/19

DMRs in TIB and TOB

Patrick Connor

References

Back-up

MillePede Modules DMRs

Primaryvertex validation

validation

Prompt calibration

Selection

Vertex

Tracks

- minimum-bias events.
- at least four d.o.f. in the vertex fit.
- at least six hits in the tracker, of which at least two in the pixel detector.

Primary-vertex validation

- at least one hit in the first layer of the Barrel Pixel or the first disk of the Forward Pixel
- $\chi^2_{track}/n.d.o.f. < 5$

Principle

- We consider one given track from a given vertex.
- The vertex is refitted without the track under scrutiny. •
- The longitudinal and transversal projections of the impact parameter $< d_{xy} >$ and $< d_z >$ of the track are computed and plotted as a function of the track η and ϕ .

Biases

Random misalignments increase the spread.

Systematic misalignments biase the mean (pattern depend on misalignment).

Patrick Connor

References

Back-up

MillePede Modules DMRs

Primaryvertex validation

 $\begin{array}{c} Z \rightarrow \, \mu \mu \\ {\rm validation} \end{array}$

Prompt calibration

Primary-vertex validation Transversal impact parameter

Patrick Connor

References

Back-up

MillePede Modules DMRs

Primaryvertex validation

 $\begin{array}{c} Z \rightarrow \, \mu \mu \\ {\rm validation} \end{array}$

Prompt calibration

Primary-vertex validation Longitundial impact parameter

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$ validation

Prompt calibration

Idea

- Data-driven method to investigate distortions in the geometry.
- Distortions in the geometry may degrade the kinematics of the two outgoing muons coming from the decay of a Z boson.

 $Z \rightarrow \mu \mu$ validation

• The reconstruction of the Z boson is thus investigated by measuring its mass as a function of the kinematics of the muons.

Selection of the muons

- $p_{\rm T} > 20 \,{\rm GeV}/c$
- $|\eta| < 2.4$
- $80 < M_{\mu\mu} < 120 \,\mathrm{GeV}/c^2$

NB: muons are reconstructed with both the tracker and the muon system, but only the geometry of the tracker is updated in the next slides.

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$ validation

Prompt calibration

DESY

Procedure

• The *Z*-boson mass is reconstructed with a Voigtan function² with fixed decay width for the Breit-Wigner component.

 $Z \rightarrow \mu\mu$ validation

- The background is reconstructed with a exponential function.
- The mass is then estimated from the mean of the Voigtian function as a function of different variables:
 - the azimuthal angles $\phi_{\mu\pm}$ of each of the muons,
 - the rapidity separation $\eta_{\mu+} \eta_{\mu-}$,
 - the cosine of the angle of the boson $\cos\theta_{\rm CS}$ in the Collins-Soper frame.

Fit of the mass

Ideally, the mass should not depend on any of these variable. In order to illustrate this, a horizontal line is fitted to the distribution of the reconstructed masses (dashed lines).

²Convolution of Gaussian and Lorentzian functions

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$ validation Prompt calibration

 $Z \rightarrow \mu \mu$ validation

	χ^2/ndf	p-value		χ^2/ndf	p-value
tracker in data taking	15.99	< 0.01	tracker in data taking	15.76	< 0.01
aligned tracker	1.39	0.14	aligned tracker	1.33	0.17

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu \mu$ validation Prompt calibration

 $Z \rightarrow \mu \mu$ validation

1.0

	χ^2/ndf	p-value		χ^2/ndf	p-value
tracker in data taking	1.31	0.22	tracker in data taking	1.43	< 0.09
aligned tracker	0.80	0.61	aligned tracker	1.25	0.21

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

Prompt calibration

High-level structures in the pixel detector can be promptly aligned during data-acquisition.

Prompt calibration

• Prompt calibration was applied from 16 August to 5 December 2016 ($\mathcal{L} = 16.4 \, {\rm fb}^{-1}$).

We show in the next slides the variations of the corrections to the position and orientation of the high-level structures over time:

- Calibration is triggered as soon as large movements are observed in any position (depending on the coordinate)
 Alignment updates vertical dashed lines
 Update threshold horizontal continuous lines
- One can clearly correlate movements in the pixel with magnet cycles (grey bands)
 - $\Delta x \lesssim 50 \,\mu{
 m m}$
 - $\Delta y \lesssim 50 \,\mu{
 m m}$
 - $\Delta z \lesssim 150 \,\mu{\rm m}$

NB: At least 20k minimum-bias events must be used to perform the prompt calibration.

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$

validation Prompt

calibration

Corrections to the position in

global x direction

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$

validation

calibration

Corrections to the position in

global y direction

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$

validation Prompt

calibration

Corrections to the position in global z direction

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation Prompt

calibration

Corrections to the orientation in

global x direction

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation $Z \rightarrow \mu\mu$

validation Prompt

calibration

Corrections to the orientation in

global y direction

Patrick Connor

References

Back-up

MillePede Modules DMRs Primaryvertex validation

 $Z \rightarrow \mu \mu$ validation

Prompt calibration

Corrections to the orientation in

global z direction

