

TECHNOLOGY AND INSTRUMENTATION IN PARTICLE PHYSICS 2017, May 22-26, 2017

Construction of the Phase I upgrade of the CMS pixel detector

Satoshi Hasegawa

Fermi National Accelerator Laboratory

Presented by

Benedikt Vormwald

University of Hamburg

on behalf of the CMS collaboration

Pixel Phase-1 upgrade project

- * Original detector not suited for operation at L~ $2x10^{34}$ cm⁻² s⁻¹
 - limited bandwidth readout chip to backend
- Upgrade detector
 - * Faster digital readout chip
 - One extra layer for more robust tracking closer to the interaction point
 - * Reduced material budget with CO₂ cooling system
 - * Use DC-DC converters to avoid replacing power cables
 - * Will operate until LS3

Scope of the presentation

- * The detector has been installed at the beginning of March and it is now being commissioned.
 - * Commissioning details in the next presentation by Benedikt Vormwald.
- * In this presentation, review the design and technology choices :
 - Upgrade in the readout system
 - * Sensor modules with newly developed digital readout ASIC and transmitter
 - * Backend control and readout system based on μTCA framework
 - * No increase in material budget despite additional tracking layer
 - lightweight carbon fiber supports
 - * two phase CO₂ cooling system
 - DC-DC converters

Detector and services

Sensor modules

- * Sensor design unchanged relative to original detector
 - Only 1 sensor geometry through entire detector
 - n+ in n sensors, 66560 pixels with 100x150 um² size
 - * Total active area 16.2 x 64.8 mm² covered with 16 readout chips
- * New digital readout chips (**ROCs**) used
 - * Layer 1 requires dedicated chip to meet data transmission needs.
 - * Each ROC transmits data at 160 Mbps
- Data from ROCs merged in single output stream in token bit manager ASIC (TBM) on each module with 320 Mbps (parallel readout) :
 - * 1 single data stream per module in FPIX and BPIX Layer-3/L4 (1 "TBM8" chip)
 - * 2 data streams per module in BPIX L2 (1 "*TBM9*" chip)
 - * 4 data streams per module in BPIX L1 (2 "*TBM10*" chips)

Digital readout chips

BPIX L2-L4 and FPIX use "psi46dig v2.1"

- evolution of ROC of previous detector
- double column drain architecture
- * 8bit ADC on chip, data transmission at 160 Mbps
- larger buffers to reduced inefficiency at high occupancy

BPIX Layer 1 uses "PROC600"

- handles hit rate of 600 MHz/cm^2
 - improve data throughput by building 2x2 clusters in the double columns and transmitting cluster information
 - further increase in buffer sizes in ROC periphery
- performance not degraded well beyond dose expected for Layer 1 (120 MRad)

- lower threshold: from 3500 e- (current detector) to ~1800 e-
 - redesigned power distribution to reduce cross talk noise
 - faster comparators to reduce time-walk
- * data streams from 2 ROC banks merged inside the TBM

Readout system

- Micro Telecommunications Computing Architecture (µTCA)-base system replaced VME-base backend.
- FC7 mother board with mezzanine boards with Fitel optical receivers.
 - a µTCA compatible Advanced Mezzanine Card for generic data acquisition / control applications equipped with a Xilinx Kintex 7 FPGA.
- Firmware ready for LHC collisions.
 - current design allows handling data rates expected for 2017 (100 kHz L1 trigger rate, with PU=65)
- * Control backend also moved to μ TCA boards
- Stability of high bandwidth readout requires reduction of clock jitter, obtained by adding QPLL filter in the services electronics inside the supply tube / service cylinders.

DCDC converters

- * The upgrade detector has factor 1.9 more channels, and it requires more power than the previous.
- * To avoid replacing power supply cables and large voltage drops:
 - * Adopt powering scheme with DC-DC converters
 - * Power supplies deliver 10 V to the detector
 - * DC-DC converters inside the support structure convert
 - * Voltages to 2.5-3.6V (depending on application)
 - * Radiation hard DC-DC converters used (CERN FEAST2 chip)
 - * No impact on sensors / readout noise

8

Mechanics

* Detector supports built with carbon fibers / foam and graphite.

- Thanks to CO₂ cooling and DC-DC converters, no increase in material budget despite additional tracking layer
- * Material moved to higher rapidities

CO2 cooling system

- Two-phase CO₂ cooling system
 replaced single phase C₆F₁₄.
- Modules are mounted on carbon fibre plates, which are thermally connected to the cooling pipes.
- Less flow required by exploiting the latent heat, which can enable the radius of pipes smaller (diameter of 1.6-3.0mm, wall thickness of ~0.1-0.2mm).
- Cooling lines and connections pressure tested at 150 bar, leak tests at 100 bar, operating pressure at -20C is 20-30 bar.

Forward Pixel Modules sits on a blades.

> One 1.6mmdiameter tube is embedded in the inner/outer ring structures

Detector construction

- Various module production chains
- Single set of qualification criteria.
- Results of module calibrations from test stands used as starting point for commissioning after installation
- Module production done in ~1 year

- Detector assemblies (integration of modules, mechanics and electronics) in Switzerland (PSI+Zurich) for BPIX, in the US (Fermilab) for FPIX
- After transport to CERN full test of detectors on the surface prior to installation (see next talk)

Summary

- * Upgraded pixel detector was installed to CMS at the beginning of March,
 - * detector designed to remove bottleneck in readout and to provide improved performance.
- Readout system has been changed from 40MHz analogue-encoded to 320Mbps digitalencoded, with larger buffers.
 - * Two types of digital readout chips have been developed.
- * Detector and backend ready for data taking.
- * Better tracking performance expected with additional tracking layer and reduced material in the tracker acceptance.

This is a significant improvement of the CMS detector that will enable future discoveries / high precision measurements.