

PROSPECT: A Precision Reactor Oscillation and Spectrum Experiment

Xianyi Zhang Illinois Institute of Technology On behalf of the PROSPECT Collaboration

TIPP, May 22, 2017

PROSPECT Experiment

A short baseline reactor antineutrino experiment. We aim to:

- Measure the spectrum of antineutrinos from a Highly Enriched U-235 reactor (HEU).
- Probe the oscillation of a light sterile neutrino, independent from the reactor models.

Reactor:

- High Flux Isotope Reactor (HFIR), at Oak Ridge Nation Laboratory.
- Size: d x h = 40 cm x 50 cm.
- ◆ Power: 85 MW.
- \bullet U-235 enrichment > 93%.
- Antineutrino generated from U-235 >99%.
- Duty cycle: 47%.

Motivation

- ★ The antineutrino flux measured by θ_{13} experiments shows ~6% global deficit from prediction. This deficit can be a hint of the sterile neutrino oscillation or incomplete data of reactor fission branches.
- The reactor antineutrino spectral measurement contains 8-10% excess at 5-7 MeV compared with the prediction.
- The spectral prediction models of reactor antineutrino are different.

Detector Design

Event Detection

- Detect Inverse Beta Decay (IBD) process of antineutrinos.
- The β⁺ event (prompt event) and *n*-capture event (~40µs delayed event) of LiLS generated scintillation light.
- The Pulse Shape Discrimination (PSD) of scintillator distinguishes the β⁺-like event and *n*-like events.

The scintillation light generate is constrained in the cell and detected by the PMTs, which enables event position reconstruction by timing and light difference.

Calibration

Background Characterization and Shielding

հՌոՈո

Prototypes and Timeline

Highlights from the Prototype Detectors

PROSPECT-50 is a 50 liter prototype to demonstrate event detection of the segmented detector, test the configurations and exercise the detector construction. The configuration has shown good light collection stability.

Detector Construction

The fabrication of the parts of PROSPECT is ongoing. All of the components are designed and made to be compatible with LiLS.

Probe a Sterile Neutrino

- Test the oscillation of sterile neutrino by observing the electron antineutrino disappearance.
- ★ We are able to test sterile neutrino hypothesis in $\Delta m^2 \sim 1 \text{ eV}^2$ range by probing the oscillation.
- The segmented AD enables cell-to-cell spectrum and flux comparison.
 Providing antineutrino spectra based on baseline. So by moving the detector and comparing the spectra bin-to-bin, we can tune L and E to achieve different mass splittings.

Spectral Measurement

Direct spectral measurement to the HEU reactor:

- Energy resolution: $\sigma = 4.5\%/\sqrt{E}$.
- The statistical uncertainty < 1.5% per energy bin in interested range (with expected 0.2 MeV energy bins).
- We will compare our measurement with other experiments and models. These comparisons can help us understand the cause of the excess at 5-7 MeV.
- Provide a reference U-235 spectrum for future reactor antineutrino experiments.

Statistical uncertainty of PROSPECT compared with the former spectrum by ILL , *Arxiv:* 1512.02202

Statistical and total uncertainty (in 3 years) compared with theoretical models, *Arxiv:* 1512.02202

Summary

- There are deviations from current reactor antineutrino models that could indicate possible new physics and/or incomplete data within the reactor models.
- The PROSPECT aims to measure the spectrum and flux of antineutrinos from HFIR at short baseline to reactor model independently search a sterile neutrino oscillation and explain the 'bump' with the spectrum model.
- Prototypes of PROSPECT have been deployed to study in-situ backgrounds, light collection performance and detector configurations.
- We have started the fabrication of detector parts. The commissioning of PROSPECT will begin in 2017.
- To observe the oscillation of sterile neutrino, we will test the best-fit at 4σ C.L. within one year of data taking.
- ♦ We will measure the spectrum of U-235 with high energy resolution and statistics.

Thank you!

Backup - The Reactor Antineutrino

 Fission reactors generate antineutrinos through βdecay.

- Mainly 4 fission source isotopes of reactor antineutrino.
- * Reactor antineutrino experiments:
 - > Antineutrino spectrum of fission reactor.
 - Oscillation of reactor antineutrino.

Backup - Phase II (in plan)

Motivation:

- * Measurement covers more oscillation cycles.
- ✤ Increase the statistical uncertainty.

Parameters:

- **♦** Baseline: 16 20 m.
- ✤ Target mass: ~10 t.
- ✤ Segmented IBD detector.

Backup - Simulation

♦ We wrote Geant4 MC package specifically for PROSPECT AD-1 and prototypes.

The simulations helped us determine the detecter response correctly and make decisions for calibration and shielding strategies.

