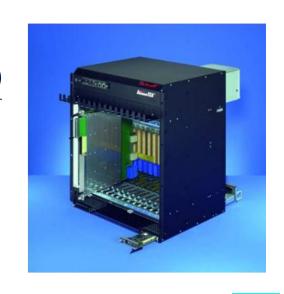
Design of High Performance Compute Node for Belle II Pixel Detector Data Acquisition System

Jingzhou ZHAO,Zhen-An LIU, Wenxuan GONG IHEP,Beijing

Wolfgang Kuehn, Thomas.Gessler, Sören Lange,Björn Spruck, University Giessen, Germany

TIPP 2017, BEIJING

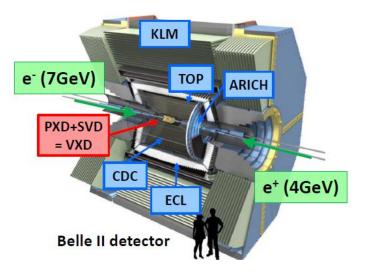
Outline

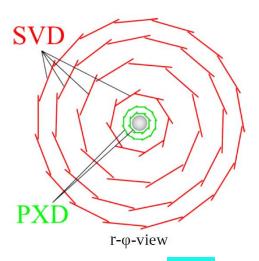


■ Belle II Pixel Detector(PXD) and DAQ requirement

■ Design of Compute Node

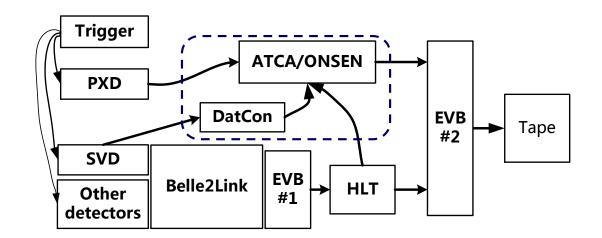
♯ Status of Belle II PXD-DAQ

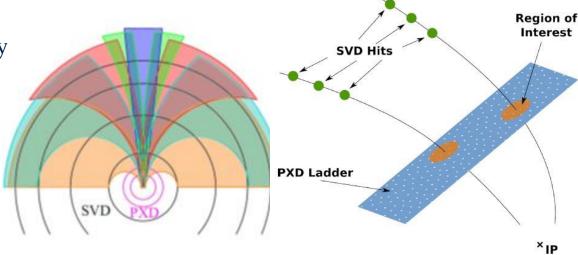

Summary


Belle II Pixel Detector

- PXD detector is a new detector in the upgrade of Belle II. It is consisted of DEPFET sensors, ASIC readout, cooling and structure frame.
- It has two layers. 8 ladders (16 half ladder) in inner layer and 12 ladders (24 half ladder) in outer layer.
- **♯** 4 layers SVD outside PXD.
- **H** Huge data output
 - 240Gb/s
 - >sum of Belle II other detectors 24Gbps

Principle of reduction


■ Reduction 1/30


PXD reduction

- Based on HLT result
 - 1/3 reduction
- Help with SVD data
 - **1/10**
- Tracking back
- ROI searching
- Data extraction

Difficulties

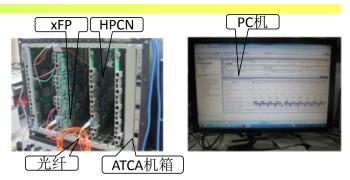
- Computing capability
- Algorithms
- 5s data buffer
- Data sharing betweenProcessing node

Belle II PXD data rate

	u 07°	
average occupancy	1%	
maximum occupancy	3%	(A. Moll: inner $pprox 1\%$, outer $pprox 0.5\%$)
average cluster size	2	$(A. ext{ Moll:} \approx 2.281)$
pixel per half ladder	0.192 · 10 ⁶ pixel	250 - 768 Pixel
number of half ladder	40	
pixel full PXD	7.68 · 10 ⁶ pixel	40 · 0.192 · 10 ⁶ Pixel
average fired pixel rate (half ladder)	$43.6 \cdot 10^{8} \text{ Hz}$	$0.192\cdot 10^{6}~{ m pixel}\cdot 22.7~{ m kHz}\cdot 1\%$
maximum fired pixel rate (half ladder)	131 · 10 ⁸ Hz	0.192 - 10 ⁶ pixel - 22.7 kHz - 3%
average fired pixel rate (PXD)	1.74 10 ⁹ Hz	40 · 43.6 · 10 ⁶ Hz
maximum fired pixel rate (PXD)	5.23 · 10° Hz	40 · 131 · 10° Hz
average data rate (half ladder)	174 MB/s	4 byte - 43.6 - 10 ⁶ Hz
maximum data rate (half ladder)	523 MB/s	4 byte : 131 : 10 ⁸ Hz
average data rate (PXD)	6.97 GB/s	4 byte -1.74 -10 ⁹ Hz
maximum data rate (PXD)	20.9 GB/s	4 byte - 5.23 - 10 ⁹ Hz
reduction rate by HLT	3	
reduction rate by ROI selection	10	
average output rate (half ladder)	5.81 MB/s	± 174 MB/s ± 174 MB/s
maximum output rate (half ladder)	17.4 MB/s	$\frac{1}{3} \cdot \frac{1}{40} \cdot 523 \text{ MB/s}$
average output rate (PXD)	232 MB/s	<u>ੀ</u> - 1 0 - 6.97 GB/s
maximum output rate (PXD)	697 MB/s	$\frac{1}{3} \cdot \frac{1}{10} \cdot 20.9 \text{ GB/s}$

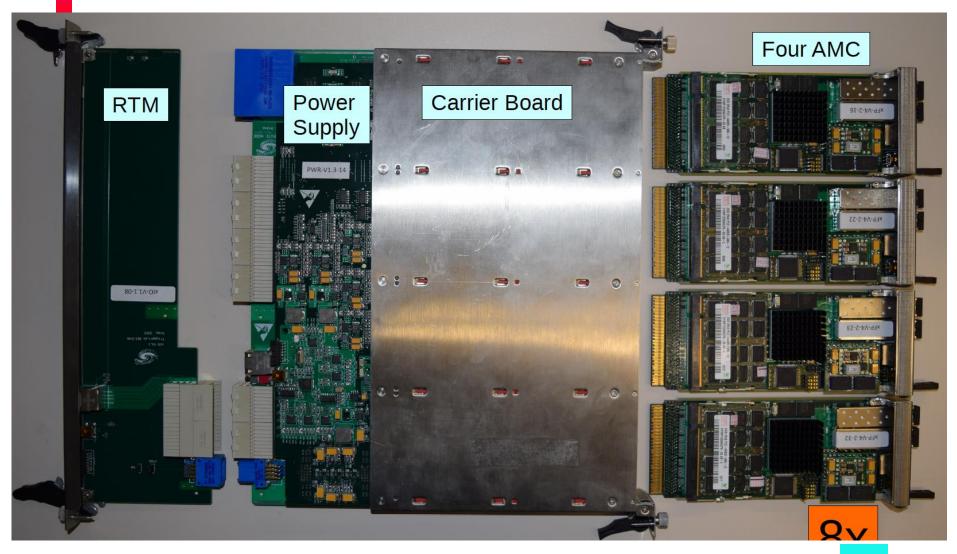
2017/5/22

Design of PXD-DAQ


- **♯** High Performance FPGA is used for data computing,
- RocketIOs are used for high speed data transmission between data processing node,
- **■** DDR is used for mass data buffering,
- ATCA/xTCA architecture is used for PXD DAQ,
- **■** Intelligent platform management control system is used for system stable.

Key parts of PXD-DAQ

■ ONSEN/PXD-DAQ


- Firmware(Giessen Uni)
- Hardware(IHEP Beijing)
 - 1 ATCA Shelf
 - 2 shelf managers
 - 1 Power Supply
 - 9 Compute Node(CN)
 - 1 ATCA Carrier(PICMG3.8)
 - 1 RTM
 - 1 Power Board
 - 4 xFP/AMC cards
 - 1 IPMC+ 4 MMCs

Full Compute Node

Carrier Board

CNCB (Compute Node Carrier Board) v3.3 (May 2015)

- ► Four full-width **AMC** slots
- Virtex-4 FX60 FPGA as switch to ATCA backplane


Backplane Full Mesh for CN

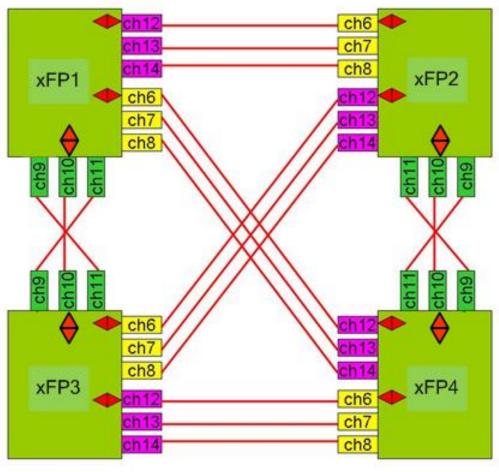
Full mesh backplane for CN data share with each node,

■ Point to Point via one MGT channel,

■ Line rate up to3.125Gbps

CNCB(CN Carrier Board) V3.3

Founction


- > Virtex-4 FX60 with PowerPC405,
- Embeded linux system for slow control,
- > 16 RocketIO channel connect to backplane,
- > 2GB DDR2,
- > 2 Ethernet ports,
- > 64MB Flash,
- > JTAG, UART Hub,
- > IPMC

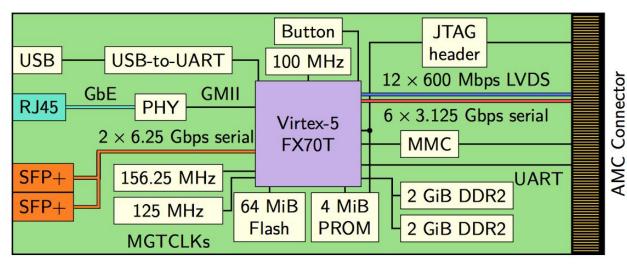
CN Carrier Full mesh for AMC

xFP-xTCA based FPGA Processor (AMC card)

Ch6-12, pin definition of AMC connector

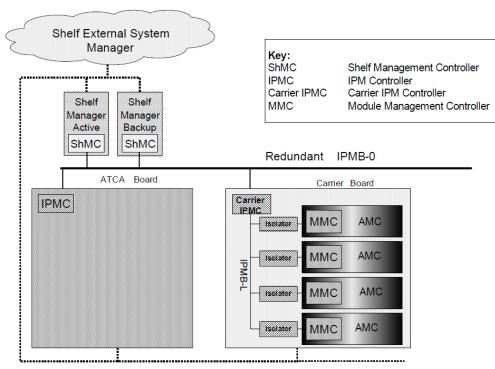
RocketIO on AMC board

Connectivity on carrier board, each channel has one input differential pair and one output differential pair


xFP(xTCA-based FPGA Processor)

Founction

- Virtex-5 FX70T with PowerPC440,
- Embeded linux system for data management,
- 2 SFP+ port,6.25Gbps/ch
- > 4GB DDR2,
- > 1 Ethernet ports,
- > 64MB Flash,
- PROM for FPGA Program
- > UART port,
- > MMC



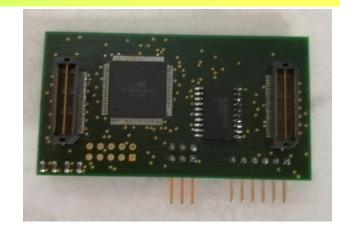
Intelligent Platform Management system

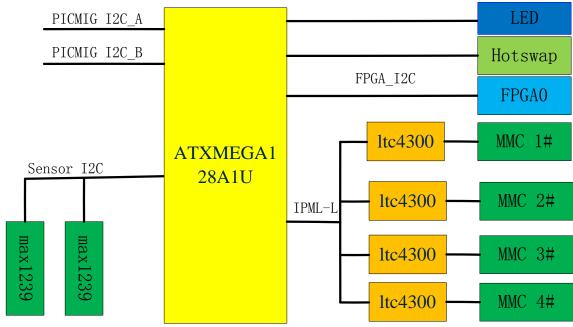
▶ IPM system

- > ShMC,
- > Carrier IPMC,
- MMC,
- > Power control
- > and Fan control.
- ➤ In Belle II DAQ:
 - > CN hotswap,
 - Monitoring current, voltage,
 - Power dissipation management,
 - > Temperature control.

2x Redundant Radial Internet Protocol -Capable Transport

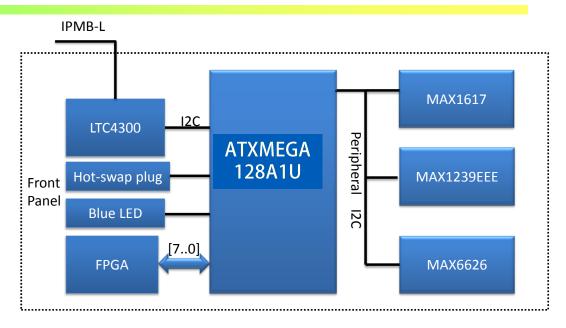
Collaborate developed with Bjoern.


IPMC-Intelligent Platform Management Controller MMC-Module Management Controller


Intelligent Platform Management system

♦ IPMC

- > Microcontroller: ATXMEGA128A1U,
- > I2C bus for IPMI Local bus and sensor bus,
- > UART for data print out and import,
- > Memory for data recording.



Module Management Controller

♦ MMC

- Microcontroller: ATXMEGA128A1U, same as used on IPMC for uniform firmware development.
- > I2C bus for IPMI Local bus and sensor bus,
- > UART for data print out and import,

Status of Belle II xTCA PXD-DAQ

Frist Beam test in DESY in 2014

■ Second BT in 2016

- The whole DAQ chain was tested with up to 2kHz, Long time stability tested for 8h.
- Everything stably watched by run and slow control

♯ Complished in 2016

- Mass Production 2015
- System integration Nov.2016
- Now whole system is being prepared to delivered to KEK for system install.

summary

■ PXD detector is a new detector in the upgrade of Belle II and has huge data output.

★ xTCA Based Compute Node has successfully designed, tested and mass produced for Belle II PXD.

■ Now whole system is being prepared to delivered to KEK for system install.

Thanks for your attention.