arrel TOF Detector

Design

Barrel time-of-flight (TOF) detector for the \bar{P} ANDA experiment at FAIR

K. Suzuki ¹, D. Steinschaden ¹, S. Zimmermann ^{1 2}, <u>N. Kratochwil</u> ¹, L. Gruber ³, C. Schwarz ⁴, H. Orth ⁴,
L. Schmitt ⁵, K. Gtzen ⁴, K. Brinkmann ², A. Lehmann ⁶, M. Bhm ⁶, K. Dutta ⁷, K. Kalita ⁷, M. Chirita ¹

¹Stefan Meyer Institute, Vienna ²Justus-Liebig Universit Gien ³CERN, Geneva ⁴GSI, Darmstadt ⁵FAIR, Darmstadt ⁶Friedrich Alexander Universit Erlangen ⁷Gauhati University, Guwahati

International Conference on Technology and Instrumentation in Particle Physics

23 May 2017

arrel TOF Detector

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Barrel TOF Detector

Requirements Capability

Design

Performance Evaluation of Single Tile

Material & Wrapping Beam Time Results

Conclusion & Outlook

Barrel TOF Detector

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

PANDA

- PANDA will perform high precision experiments using cooled beams of p.
- Fixed Target experiment, 1.5 15 GeV/c momentum.
- High luminosity mode (L= $2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$); High resolution mode ($\Delta p/p = 5 \cdot 10^{-5}$).
- Azimuthal angle coverage: 22,5° 140°.

- Charmonium spectroscopy with precision measurments of mass, width, decay branches.
- Investigation of exotic quark states, charmed hybrids, glueballs.
- γ -ray spectroscopy of hypernuclei.

Barrel TOF Detector

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

Requirements

- Mechanics shared with DIRC.
- Non-magnetic material.
- Time resolution below 100 ps.
- Withstand radiation during operation time $\phi_{eq} \approx 9 \cdot 10^{10}$ $n_{eq}/$ cm² in 10 years.

- Good granularity for position resolution.
- Software Trigger:
 - Event Sorting.
 - Online event time (t0) calculation.
 - Particle Identification.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Barrel TOF Detector

ĕo

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

Capability (1)

- Event Sorting: For high luminosity mode 20 MHz interaction rate. Event Package might overlap.
- Software Trigger: High granularity and time resolution provide a robust tool for software triggers and calibration of the more complex detector systems.

Barrel TOF Detector

00

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

Capability (2)

- **T0 Determination**: No start-stop ToF, relative time of flight uses momentum information and track lenght to determine t0.
- Monte Carlo Simulation: Resolution $\sigma_{t0} = 118$ ps.

 Particle Identification: Barrel TOF allows PID of low-momentum particles (≈ 700 MeV/c) below Cherenkov threshold of Barrel DIRC, for Hypernuclei programme crucial.

separation power

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Barrel TOF Detector

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

Overall Design

- Barrel TOF consits of 16 independent segments (2460 \times 180 \times 20 mm³).
- Electronics concentrated on the end.
- Long signal transmission lines embedded in a multilayer PCB¹
- 1.920 Single Scintillator Tiles, 15.360 SiPM.

¹MEG II arXiv:1301.7225v2 [physics.ins-det] 4 Feb 2013

arrel TOF Detector

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

Single Tile Design

- Single Scintillator Tile connected (≈ 90 × 30 × 5 mm²) to 4 SiPM on both ends.
- Connection: Serial (a), Hybrid (c).

	Sensitive area	Bias Voltage	Signal shape	Gain	V_{BD} adjustment
Single	1	$V_{br}+OV$	-	1	
Series	N	$N \times (V_{br} + OV)$	faster	1/C	Yes
Parallel	N	V_{br} +OV	slower	C	No
Hybrid	N	V_{br} +OV	faster	1/C	No

200

Performance Evaluation: Material & Wrapping

	EJ-228	EJ-232
Photons / MeV e ⁻	10 200	8400
Signal rise time [ps]	500	350
Decay Time [ps]	1400	1600
Pulse Width [FWHM] [ps]	1200	1300

Time resolution with different wrapping EJ-232 (top), EJ-228 (bottom).

Wrapping material	Time resolution [ps]	Number of detected photons
No wrapping	55.0 ± 0.3	288 ± 2
Aluminised Mylar foil	52.7 ± 0.3	355 ± 2
Tyvek hardstructure 1057D	55.0 ± 0.3	394 ± 3
Enhanced specular reflector (ESR)	55.2 ± 0.3	355 ± 3
Teflon tape	59.4 ± 0.3	408 ± 4
aluminium foil	54.2 ± 0.3	344 ± 3
Wrapping material	Time resolution [ps]	Number of detected photons
No wrapping	61.3 ± 0.3	371 ± 2
Aluminised Mylar foil	59.7 ± 0.3	445 ± 3

Barrel TOF Detector

0

Design

Performance Evaluation of Single Tile

Performance Evaluation

0.

- Position dependency measurment with optimised condition: EJ-232, with wrapping, 4 Hamamatsu SiPM.
- 2000 events / position, 3069 positions.
- Mean time resolution $\sigma = 53.9$ ps.
- Position Resolution:
 - x-direction 5,5 mm (σ).
 - y-direction 29,4 mm.

୬୯୯

Beam Time Results

•

- Beamtime tests in 2014 and 2015 with other geometrical design, consistent with laboratory measurements.
- CERN June 2016: without time to optimise operational condition $\sigma_t = 70$ ps with final design.
- CERN November 2016
 - Two TOF-Stations, 29m apart.
 - Beam with 7 GeV/c, containing protons, pions, electrons, kaons.
 - Measured distance with Laser: 28,66 m; calculated distance with Beam files: 28,43 m.
 - $\sigma_t = 58$ ps, analysis ongoing.

arrel TOF Detector

Design

Performance Evaluation of Single Tile

Conclusion & Outlook

Conclusion & Outlook

- PANDA at FAIR.
- Barrel Time of Flight Detector.
- Technical Design Report in Review.
- Time Resolution: labor: 53,9 ps; beamtime: 58 ps.

- Further optimization of geometry.
- Radiation hardness.
- Front End Electronics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ