Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC

Jason Mansour

On Behalf of the ATLAS Experiment

May 24, 2017

Institute of High Energy Physics - Chinese Academy of Sciences

Introduction

- HL-LHC upgrade due in ~2025
- Plan to deliver 3000 fb⁻¹ of integrated luminosity
- Mean interactions per bunch crossing up to $\mu = 200$
- Higher track density => need improved resolution, efficiency to maintain tracking and b-tagging performance
- Inner detector will need replacement due to radiation damage
- Occupancy will be too high to keep TRT
 => Whole new, all silicon Inner Tracker (ITk)

Timeline

- Important milestones: Strip and Pixel TDRs (Technical Design Reports)
 - Strip TDR approved recently! Results in this presentation from the TDR (<u>ATLAS-TDR-025</u>)
 - Pixel TDR and layout decision coming soon

Overview

- All new Inner Tracker (ITk) for
 the High-Luminosity LHC
- Strip detector
 - Extends up to R = 1000 mm
- Pixel detector
 - Coverage up to $|\eta| < 4.0$
 - Inclined modules
 - Rings in forward region
- No transition radiation detector

Pixel Detector - Barrel

Inclined layout:

- Tracks ~perpendicular to surfaces
- Less material in forward region
- Multiple clusters/layer
- Less silicon needed

Pixel Detector - Rings

Instead of classical disks, use rings in endcap region

- Constant number of clusters vs. η
- Increase number of rings at high η
- Save silicon surface
- Services routed on support structures

ATLAS ITk Performance at the HL-LHC - Jason Mansour - IHEP

Strip Detector Layout

- Four barrels (full coverage up to $|\eta| = 1.1$)
- 2x6 endcap disks (full coverage up to $|\eta| = 2.0$)

Material Budget

- Preliminary modeling of the material budget
 - Less than 1 radiation length in active tracker volume
 - Less than 1.5 radiation lengths overall before calorimeter, including moderator
 - Greatly reduced compared to current Run 2 layout

Track seeding

- Track seeds are constructed from 3 pixel or strip space points
 - Pixel: space points are clusters, Strip: combine stereo information from each module side
 - First process strips, then pixel
- Confirm seeds with fourth hit

Number of hits per track

- Number of expected hits in pixel and strip per track
- Over most of the volume, average of 13 hits per track or more
- Less than 0.1 hole (expected, but missing hit) per track
 - Including acceptance gaps, hits below threshold in readout, pattern recognition mistakes
 - Not considering detector defects
- Excellent coverage

Track Param. Resolution (p_T , ϕ_0 , θ_0)

- Estimated using single muon MC samples (removed outliers)
- Track parameter resolution greatly improved with all-silicon inner tracker

Impact Parameter Resolution (d₀, z₀)

- Main contribution to uncertainty: Multiple scattering at low p_T, intrinsic detector resolution at high p_T
- Excellent resolution, comparable or better than current inner detector

Pileup tolerance

New ITK must handle high pileup environment of the HL-LHC (μ up to 200)

Track reconstruction efficiency:

nearly unchanged at high µ

Number of all reconstructed tracks over number of truth particles:

 Also flat wrt. µ, no problems with fake tracks at high pileup observed

Photon conversions

- Dedicated photon-conversion finding algorithm
 - Runs after track finding
 - Builds tracks with loosened requirements from unused clusters
 - Fewer clusters, not pointing to PV, ...
- Overall efficiency 35% (photons from VBF H → γγ, p_T > 20 GeV and |η| < 2.37), considerably higher at smaller radii
- Rate of conversions much lower than in Run 2 due to lighter tracker

Tracking in Dense Environments (TIDE)

- Maintain performance in core of high pT jets => Important for b-jets, jet substructure, JES calibration
- In jets, hit clusters may merge, leading to loss of tracks
 - Clusters with multiple tracks are normally only used once to suppress fakes
 - Currently, ATLAS uses a neural network to identify truly merged clusters and not penalize them
 - Algorithm not available yet for ITk: emulate performance using truth information
- Performance investigated with 3-prong tau decays and b-jets

Conclusions

- An all new inner tracker for HL-LHC!
 - Full silicon, no TRT
 - Tracking acceptance up to |eta| < 4.0
- Excellent performance observed in simulation
 - Comparable or improved wrt. current detector despite pileup up to 200
 - Better IP and track parameter resolution
 - Reconstruction efficiency satisfactory in dense environments
- Still many parameters open
 - Finalize pixel layout
 - 3D sensors in inner pixel layers / monolithic in outer pixel layers?
 - Optimize tracking algorithms for ITk
- Well on track for high-luminosity upgrade!

Current Layout

Pixel detector:

- 4 layers including IBL, 6 endcap discs
- 92m pixels
- 2 m² active area

Semiconductor Tracker (SCT)

- 4 barrel layers, 18 endcap discs
- 4100 stereo strip modules
- 60 m² active area, 6M channels

Transition Radiation Tracker (TRT)

- Straw tubes w. 4 mm diameter
- 50k + 250k straws
- · Helps with particle identification