High granularity digital Si-W electromagnetic calorimeter for forward direct photon measurements at LHC

Hongkai Wang

for the ALICE-FoCal Collaboration

Utrecht University

TIPP'2017, Beijing

Physics Motivation

Motivation

- Gluon density increases with Q² and 1/x(Gluon Saturation)
- Direct photons promise to be a very clean probe
- LHC provides opportunity to access

small-*x*

Probing small-x requires separation power in direct photon and decay photons from π^0

- High granularity detector
- Should allow 3D shower shape analysis and/or Particle Flow Algorithm

FoCal upgrade proposal

Proposed installation

- Proposal discussed within ALICE
- In LHC long shutdown 3
- Outside the magnet of ALICE
- Focal-E + Focal-H
- Pseudorapidity : $3.5 < \eta < 5.3$
- ~7m away from interaction point

FoCal strawman design(FoCal-E)

- Hybrid layers
 - energy measurement+shower separation
 - $LG: 1 \times 1 \text{ cm}^2$, $HG: 30 \times 30 \mu m^2$
 - Pads + CMOS pixel sensors
- Analog + Digital readout
- Tungsten absorber (3.5mm ~ 1X₀)

Prototype design

High granularity layers (HGL) need new technology, prototype built to perform generic R&D

Beam tests

Utrecht 2014-2017

The Netherlands

- μ
- Energy : continuous

DESY 2014.02-2014.03

Germany

- €
- Energy : 2, 3, 4, 5.4 GeV

CERN 2014.09-2014.11

Switzerland

- e, π (Mixed)
- Energy : 30, 50, 100, 244 GeV

Event reconstruction and tracking

Alignment

Inclination correction

Apparent transverse shift of sensors with linear dependence on longitudinal position: most likely explained by relative inclination of the beam direction.

 Related to weakly defined DoF from alignment(no constrain on orientation of z direction).

23-05-2017

Calibration

calculate hit density in rings around shower center
equalize response of the 4 sensors in each layer
relative layer-to-layer calibration with gamma distribution

23-05-2017

Shower center determination

- Use information of all good layers to reconstruct the shower center.
- Refine the shower core region by setting cut on amplitude in pixel region.
- Use power law weight to make shower core region more significant.

Event selection and pion contamination

TIPP'2017, BEIJING

Electron event selection

- Shower center selection
 - > -1.5 < x_c, y_c < 1.5 cm
- Cut on number of hits (reject pions)
 - Contamination negligible in test beam data(~1%)
- Exclude gap and overlap

$> e/\pi$ separation power of FoCal (Simulation)

- Pion rejection better than 90% in broad range of energy
 - Using cut on shower start point
- Considering other separation methods (lateral information) to achieve higher separation power

electron cut at 18000, pion contamination 1%~2%

Linearity & Energy Resolution

Position Resolution

- Use clusters in layer 0 as true position.
- Sigma of the distribution is the shower position resolution.

Lateral Profile

Average hits densities as a function of distance to shower center.

- Shows unprecedented detail of shower profile
 - Unique feature of the detector

23-05-2017

Measured Moliere Radius from Cumulative Distributions

- Integral of the lateral profile
- Measured Molière radius is around 11 mm.

23-05-2017

Two-Shower Separation

• Good separation power of two close showers down to few mm

Conclusion

Successful proof of principle of particle counting calorimetry.

- A high granularity digital Si-W calorimeter prototype for FoCal has been built and tested.
- Good linearity and reasonable energy resolution have been achieved.
- Provide capability of e/π separation in broad range of energies.

Extremely high granularity allows unique measurements.

- Small Molière radius (11mm).
- Lateral shower profiles down to few percent Molière radius have been obtained.
- Down to the pixel level(~μm) position resolution was reached.
- Excellent two-shower separation power.

Thank you

23-05-2017

Back-up

23-05-2017

Analysis overview

Track data(muon + pion)

Electron data

Particle tracking(muon, pion)

Alignment based on track residual

Inclination correction

Shower reconstruction

Shower center determination

Sensor sensitivity calibration

MIP calibration (not in this presentation)
Detector performance results

Transverse hits distribution for 244 GeV

Data vs MC

23-05-2017