4th International Conference on Technology and Instrumentation in Particle Physics (TIPP 2017)

May 21–26, 2017, Beijing, China

# Spin-off Application of Silica Aerogel in Space: Capturing Intact Cosmic Dust in Low-Earth Orbits and Beyond



#### Makoto Tabata (Chiba Univ.)

makoto@hepburn.s.chiba-u.ac.jp

On behalf of the Tanpopo Team





#### **Outline**

#### o Introduction

- Application of silica aerogel in HEP experiments
- Spin-off application of aerogel as dust-capture media

#### Application of Silica Aerogel in Space Science

- Experiments in low-Earth orbits
- Cometary dust sample return mission in deep space

#### Astrobiology Mission: Tanpopo

- Objectives and status
- Aerogel-based capture instruments



# **HEP Application of Silica Aerogel**

- Silica aerogel:
  - Colloidal foam of nanoscale SiO<sub>2</sub> particles
    - Transparent
    - o **Tunable refractive index** [i.e., bulk density] n = 1.003-1.26 Journal ref. / M. Tabata et al., Nucl. Instrum. Methods A 623 (2010) 339.
      - Density determined by silica—air volume ratio



#### Application in high-energy physics: Cherenkov radiator

- Threshold-type Cherenkov counter;
   Ring imaging Cherenkov [RICH] counter
- Particle identification;
   Velocity measurement
- Accelerator-based particle- and nuclearphysics experiments: e.g., Belle II, LHCb, etc.;
   Space- and balloon-borne cosmic-ray experiments: e.g., BESS, AMS-02, etc.



o Presentation ref. / M. Tabata et al., in: Session R1-Particle identification(1) on May 23.

# Spin-off Application of Aerogel in Space

#### Q: How can we retrieve intact cosmic dust from space?

Cosmic dust = Micron-size [~10 µm dia.]
 Hypervelocity [Max. ~16 km/s in low-Earth orbits]

#### A: Expose "silica aerogel" in space!

- Why aerogel?
  - Ultralow density 

    Intact dust capture inside the aerogel
  - o Transparent → Visible impact cavity/captured dust grain





# **Laboratory Impact Experiment**

- Test beam experiment? No, gas gun experiment.
  - Ground-based laboratory simulation of dust capture in aerogel
- Two-stage light-gas gun
  - Accelerator in the space science field
  - o 7-mm dia. bullet [Max. 7 km/s]
  - Acceleration mechanism:
     Gunpowder [1st stage] → Piston → H<sub>2</sub> gas [2nd stage] → Projectile → Target







# **Hypervelocity Impact Physics**

Morphological analysis of impact tracks under an optical microscope



 Lower-density aerogel to absorb impact shock

30 µm glass beads shot at 6 km/s by the gas gun





# Application of Silica Aerogel in Space Science

# Cosmic Material Sample Return

- Cosmic sample material return is very important.
  - Planetary science, astrochemistry, astrobiology, space debris research, and etc.
- Ground-based state-of-art analysis instruments are used.
  - o Biochemical analysis, mineralogical analysis, and etc.

 Aerogel was first recognized as promising cosmic dust capture media in the 1980s.

- o Use of aerogel in space since the 1990s.
- o First space missions in near-Earth orbits:
  - NASA's space shuttle cargo bay
     [0.02 g/cm³, 9-day exposure]
  - o **ESA's Eureca freefrying spacecraft** [0.05 g/cm<sup>3</sup>, 11-month exposure]



# LAD-C: Debris Collection Project in LEO

 LAD-C: Large Area Debris/Dust Collector aboard the International Space Station

Project unfortunately canceled before building the system due to

a political reason in 2007

#### ○ Observation of ~100+ µm debris

- Potential risk of impact to orbital satellites
- No ground-based observation by radar
- Use of 10 m² aerogel-based collector

#### Hybrid dust detection

- Sample return by 0.06 g/cm<sup>3</sup> largevolume aerogel tiles
- Real-time detection by an impact sensor [using acoustic vibration of aerogel by dust impacts]





# Stardust: Deep Space Mission to a Comet

- Stardust: NASA's comet Wild-2 dust sample return mission
  - Launched in 1999 and returned to Earth in 2006
  - First extra-terrestrial object's sample other than the Moon
  - Interplanetary and interstellar dust at cruising phase
- Flyby dust collection by a density-gradient aerogel-base sampler
  - Aerogel density: ~0.01 g/cm³, [Surface], ~0.05 g/cm³ [Bottom]
  - Flyby speed: 6.1 km/s







# Astrobiology Mission: Tanpopo

# **Tanpopo Mission Objectives**

- Japan's first astrobiology mission in space [International Space Station]
  - o Proposed in 2007
  - Launched in 2015
  - o Retrieved in 2016, 2017, and 2018
- Test of interplanetary transfer of life or its precursor
  - Tanpopo (in Japanese) = Dandelion
  - Spread of dandelion's seeds on Earth
     → Transfer of life in space
- Multifaceted sample return mission
  - Cosmic dust capture experiment by silica aerogel
    - Microbes in terrestrial dust
    - Organic compounds in interplanetary dust
    - Space debris
  - Space exposure experiment
    - Terrestrial microbe and organic compound samples



- 25+ institutes
- 50+ collaborators
  - o Biologist
  - Chemist
  - o Physicist
  - Planetary scientist
  - Engineer

#### **Tanpopo Instruments**

Instruments dedicated to the Tanpopo mission:
 Capture panels [CP] and exposure panels [EP] developed

by the Tanpopo team

CP: 12 units x 3 years = 36 units

EP: 1 unit x 3 years = 3 units

 $\circ$  10 × 10 × 2 cm<sup>3</sup> per unit

Cost-effective sample return instruments





 Use of the exposure experiment opportunity provided by JAXA collaborating with NASA and SpaceX







# Ultralow-density Double-layer Aerogel



0.03 g/cm<sup>3</sup>

- 0.01 g/cm³ ultralow-density aerogel
  - World's lowest density used in space

#### Double-layer [box-framing] aerogel

- Surface layer: 0.01 g/cm³ [Brittle]
  - Capture ~10 µm dust particles
- Base layer: 0.03 g/cm³ [Relatively tough]
  - Protect the surface layer from vibrations
  - Capture high-energy dust particles
- Both the layers chemically combined

Journal ref. / M. Tabata et al., J. Sol-Gel Sci. Technol. 77 (2016) 325.





# **Tanpopo Mission Status**







- Rocket launched in Apr. 2015
  - o 2016, 2017, and 2018 samples
  - Arrival in the ISS
- ExHAM exposed in May 2015
  - CPs for 2016 attached to the ExHAM
- ExHAM recovered in Jun. 2016
  - CPs for 2016 stored in the Pressurized Module
- Cargo spacecraft retrieved in Aug. 2016
- 2016 sample analysis and 2017 sample exposure in progress





# **Beyond Low-Earth Orbits**

# Another possible habitable zone in our solar system: Saturn's moon Enceladus

- NASA's Cassini mission [Saturn and its satellite system observation]
  - Gravity field analysis suggested:
    - Underground ocean [Liquid water]
  - o Plume analysis detected:
    - Organic molecules
    - Nano-silica particles
    - Hydrogen molecules [Free energy]
- Hydrothermal environment by tidal heating
  - → Possible extra-terrestrial life
- Enceladus flyby missions proposed by NASA and JAXA
  - Plume particle in-situ analysis and sample return based on the aerogel intact capture technique



# Summary

- A spin-off application of silica aerogel as intact cosmic dust collection media was recognized in the 1980s.
  - Laboratory gas gun experiments support the application of aerogel to hypervelocity particle capture.
- Aerogel has been used in several missions in low-Earth orbits and deep space since the 1990s onwards.
  - Retrieved dust samples are useful in planetary science, astrochemistry, and space debris research fields.
- Recent astrobiology missions employ high-performance aerogel-based dust sampler.
  - The Tanpopo mission will create new knowledge about the origin of terrestrial life, and the proposed Enceladus mission will explore possible extra-terrestrial life.