Neutrino Physics and Detectors

Liangjian Wen

International Conference on Technology and Instrumentation in Particle Physics (TIPP), Beijing, May 21-26, 2017

What we have learned?

Standard Parametrization of the PMNS Matrix

Quarks vs. Leptons: A big puzzle of fermion flavor mixings

Future Neutrino Puzzles

Neutrino physics: problems and methods

Y.F. Wang @ TIPP2011

Selected Topics

- Neutrino oscillations (running & future)
 - Reactor neutrinos: Daya Bay, Double Chooz, RENO, JUNO, RENO-50, ...
 - Accelerator neutrinos: T2K, NoVA, LBNF/DUNE
 - Atmospheric neutrinos: ORCA, Hyper-K, PINGU, INO, ...
 - Solar neutrinos: SuperK, SNO, Borexino, ...
 - Sterile neutrinos
- NLDBD searches
 - KamLAND-Zen, EXO, Gerda, Majorana, CUORE/CUPID, SNO+, NEXT, SuperNEMO, PandaX-III, AMoRE, CANDLES, COBRA, ...
- Neutrino astronomy
 - Supernova → in combination with solar/atmospheric/reactor neutrino detectors
 - Geo-neutrinos \rightarrow in combination with solar/reactor neutrinos
 - High energy neutrinos (not covered in this talk)

Apologies for incompleteness, bias and mis-handling

Precision Measurements

∆m₃₁>0?

δ_{CP}=?

ν=ν ?

Reactor Experiments

- Daya Bay
 - $\Delta(\sin^2 2\theta_{13}) \sim 0.003 \rightarrow \sim 3\%$
 - $\Delta (\Delta m^2_{ee}) \sim 0.07 \rightarrow \sim 3\%$
 - operation till 2020
- RENO: ~5%.
 - operation funding secured until Feb. 2019
- Double Chooz: ~10%
 - secured to Jan. 2018 (may change)

by J. Zhao

Sterile v exists?

Parameter space allowed by LSND and MiniBooNE is excluded by the combination of MINOS(+), Daya Bay and Bugey-3

Next generation sterile experiments are almost ready (SOX, PROSPECT, SoLid, Chandler, NEOS, Neurino4, DANSS, nuLat, ...)

Accelerator Experiments

First generation LBL experiments ended

Hits on δ_{CP}

Future Neutrino Detectors for neutrino mass ordering and δ_{CP}

RENO-50

(protoDUNE, MicroBooNE, ICARUS-T600, SBND)

NMO determination at JUNO

- Precision measurement of 3/6 mixing parameters
- Rich physics: supernova-v, geo-v, atmospheric-v, solar-v, exotics, etc
- Key: get max. photons in a 20 kton LS detector
 - High QE PMT, high coverage
 - High transparent LS (> 20m A.L @430nm)
 - Low radioactivity (< 10⁻¹⁵ g/g (U, Th))

AS: Acrylic sphere; SSLS: stainless steel latticed shell

Success: 20" MCP-PMT

MCP-PMT Performance

PMT Purchasing of JUNO

Characteristics	unit	MCP-PMT (NNVC)	R12860 (Hamamatsu)
Detection Efficiency (QE*CE*area)	%	27%, >24%	27%, >24%
P/V of SPE		3.5, > 2.8	3, > 2.5
TTS on the top point	ns	~12, < 15	2.7, < 3.5
Rise time/ Fall time	ns	R~2, F~12	R~5,F~9
Anode Dark Count	Hz	20K, < 30K	10K, < 50K
After Pulse Rate	%	1, <2	10, < 15
Radioactivity of glass	ppb	238U:50	238U:400
		232Th:50	232Th:400
		40K: 20	40K: 40

15k MCP-PMT (75%) from NNVT 5k Dynode(25%) from Hamamatzu

By Scaling PMT Spec for LS quantity to reach $3\sigma@$ 6year \rightarrow

Decision based on risk, price, performance merit for physics

Challenge: LS Purification

- Extremely clean LS in Borexino, relatively mature technology
- Technologies
 - Al₂O₃ column, distillation, gas striping, water extraction

```
<sup>14</sup>C/<sup>12</sup>C ~ 2.7 x 10<sup>-18</sup>
```

```
<sup>238</sup>U (Bi-Po 214)
< 9.7 x 10<sup>-19</sup> g/g (95% CL)
```

```
<sup>232</sup>Th (Bi-Po 212)
< 1.2 x 10<sup>-18</sup> g/g (95% CL)
```

⁴⁰K no evidence (TBD)

³⁹Ar << ⁸⁵Kr

Borexino, N. Rossi @ Neutrino2016

LS pilot plant in Daya Bay LS hall.

A new batch of purified LS was produced and filled into DYB-AD1.

→ evaluate radioactivity → optimize LS recipe

NMO & δ_{CP} determination via Matter Effects

Hyper Kamiokande

20x larger, same photo-coverage better PMTs

SuperK

50 kt, PMT coverage: ~40% Threshold: ~4 MeV Light yield: 6 PE/MeV

- Technical issues
 - PMTs protection under pressure (60 m)
 - Water circulation system
 - High eff. PMT

ORCA

Indian Neutrino Observatory: INO

- 50kt magnetized Iron CALorimeter detector (ICAL) interleaved by RPC for detecting atmospheric neutrinos
 - Neutrino mass ordering
 - Octant and precision of $|\Delta m^2_{31}|$ and θ_{23}
 - New physics
 - Magnetic monopole search
- Features:
 - Muons fully contained up to 20 GeV
 - Good charge resolution, B=1.5 T
 - Good tracking/Energy/time resolution

3 modules, 151 layers One module:

16 m x 16 m x 14.5 m

EGADS and SK-Gd

• Gd in water:

- GdCl₃ highly soluble in water
- Improve low energy detection capabilities
- flavor sensitive
- Good for LBNE, supernova, reactor and geo-neutrinos, ...
- A 200 ton-scale R&D project, EGADS – is under construction at Kamioka

Liquid Ar TPC

Idea first proposed in 1985

- Dense target
- ample Ionization & scintillation: good energy resolution & Low threshold
- Excellent tracking and PID capabilities

Challenges

- LAr purity (long-drift)
- Readout wires or large electron multipliers
- **Cold electronics**
- Cryostat for multi-kiloton TPC

DUNE LArTPC R&D: Single-Phase

CPA APA CPA APA APA **APA/CPA** assemblies APA's w/ "wrapped" induction wire planes Scintillation detection: light guides embedded in APA's, SiPM readout rift Distance 3.6m Active Height Field Cage 3.6 m Fiducial volume 14.7m Foam Insulation Steel Cage

DUNE LArTPC R&D: Dual-Phase

NLDBD experiments

Ονββ Decay

- Unique feasible way to determine the Majorana nature of v. Possible to pin down mass ordering
- Lepton number violation process
- If Majorana: a natural way to understand tiny v masses (seesaw)
- Set constraints on 2 Majorana-type CP-violating phases

Ονββ Decay

Better

- Good energy resolution
- Large detector volume

Technologies

CUPID (Zn⁸²Se, Li₂¹⁰⁰MoO₄, TeO₂), AMoRE (¹⁰⁰Mo), CANDLES (⁴⁸Ca), ZICOS (⁹⁶Zr), AXEL (¹³⁶Xe), DCBA (¹⁰⁰Mo/ ¹⁵⁰Nd), COBRA (CdZnTe), ...

Sensitivity vs. Background and Exposure

Chin.Phys.C 2017, 41(5): 53001-053001 background index in ROI/(10⁻³ cnts/keV/mol/yr) 29

Fundamental Requirements

- Enrichment of the source material
 - − 10 kg/100 kg scale \rightarrow ton scale

30

Deep underground location to shield cosmogenic backgrounds

Several underground labs around the world, next round of experiments 1-2 km deep.

Fundamental Requirements

 Ultra-low radioactive contamination during detector construction

Materials used $\approx <10^{-15}$ in U, Th (U, Th in the earth crust \sim ppm)

 New Techniques to discrimination signal from background

Non trivial for E ~ 1 MeV This gets easier in larger detectors

Future Concepts

LEGEND

new collaboration formed in October 2016, members of GERDA, Majorana and other groups

 $\label{eq:legender} \begin{array}{l} \mbox{LEGEND} = \mbox{Large Enriched Germanium Experiment for} \\ \mbox{Neutrinoless } \beta\beta \mbox{ Decay} \end{array}$

(up to) 200 kg in existing infrastructure at LNGS starting ~2020, background reduced by ~5 relative to GERDA

1000 kg if Ge is chosen in US down-select process, background reduced by ~30 relative to GERDA

B. Schwingenheuer @ CERN EP seminar, Jan 2017

cryostat sketch for 4x250 kg

Future Concepts

Future Concepts

Running "KamLAND-Zen 800" → Future "KamLAND2-Zen" with 1000 kg enriched Xe. Assumptions:

winston cones:	x 1.8
Higher Q.E. PMTs:	x 1.9
LAB-based liquid scint.:	x 1.4
Overall:	x 4.8

Expected resolution (2.6 MeV): 4% → ~2% Target sensitivity 20 meV

Beyond JUNO: possible < 10 meV

Summary

- Few significant advances of neutrino physics. Hints on δ_{CP}
- Many technological progresses → preparation for the next generation experiments
 - larger mass →10~20 times in general, comparing to the previous generation
 - better resolution, precision, S/N ratio, etc
- New discoveries ahead of us, probably in 10 20 yrs
 - Neutrino mass ordering
 - Neutrino is Majorana?

Thanks

Acknowledgements

Many Information from relevant talks given at Neutrino2016, ICHEP2016, NeuTel2017, NNN16, DBD16, etc.