

SBND Detector at Fermilab

Ting Miao (FNAL) & Bo Yu (BNL)

SBND - Short-Baseline Near Detector

- A LArTPC detector as part of the three-detector Short Baseline Neutrino (SBN) program using Fermilab's Booster Beamline (BNB)
- A new scientific international collaboration of 33 institutions from US, UK, Switzerland and Brazil

SBND

Scientific Mission of SBND Experiment

- Serve as a near detector in sterile neutrino search through $v_{\mu} \rightarrow v_{e}$ oscillation
- Study v-Argon interaction physics using millions of events

Detector R&D Mission of SBND

- Detector design and construction serve as a key prototype for long baseline neutrino program (i.e.DUNE)
- Many key detector components have designs and construction procedures similar or complementary to (proto)DUNE

ICARUS@LNGS

2015 MicroBooNE

2019 SBND

2018 ICARUS@SBN

3 5/22/2017

SBND Detector Components

TPC Design

SBND

5/22/2017

5

TPC in LAr for neutrino interaction tracking

- 112-ton active LAr volume, 270-ton total LAr
- 4m (tall) x 5m (long beam) x 4 m (wide –drift) : two 2m drift volumes (500v/cm drift field)
- Cathode Plane Assembles (CPA) in the middle
- Anode Plane Assembles (APA) on the two ends
- APA has 3 wire planes with 3mm spacing: vertical (Y-layer) and $\pm 60^{\circ}$ (U-layer & V-layer)

TIPP 2017

😤 Fermilab

Anode Plane Assemblies

- Two 2.5m wide wire frames on each side of the drifting field
- U/V wires are electronically connected from the two wire frames for a continuous coverage
 - The connected wires are readout as one
 - Total 11,263 channels readout

😤 Fermilab

Anode Plane Assemblies

6

5/22/2017

Anode Plane Assemblies Progress

- APAs are being built by UK-STFC and US-NSF supported Universities
 - UK: Manchester U, U Sheffield, Liverpool U, and U Lancaster
 - US: Yale U, Syracuse U and U Chicago
- APA frames are fabricated by UK company and to be delivered in June
 - Flatness of +/- 0.5 mm requirement reached by shimming
 - Tighter requirement than DUNE due to the smaller 3mm wire plane spacing

Production APA Frames

Winding Prototyping at US and UK

🛟 Fermilab

7 5/22/2017

SBND

Wire Winding

• Winding to start in July at UK and US facilities

Wright Lab at Yale

Wire Head

🛟 Fermilab

8 5/22/2017

SBND

Cathode Plane Assemblies

- Stainless steel frames with meshed sub-frames
- In final production stage at Liverpool University

9 5/22/2017

HV System

- 100KV is supplied by HV feed-through tube going through cryostat roof
- Roll-formed field cage tubes surrounds the drifting area
 - SBND design works with stainless steel or aluminum roll-form
- Both field cage and feed-through in production soon

TPC Electronics

SBND Cryostat Design

3rd generation prototype for DUNE

CERN designs and fabricates

Experience from two DUNE prototypes

Detector Penetrations

Lighter beam and support structure ribs

Feed-through (TPC-left, PMT-right) **‡**Fermilab

SBND

Scintillation Light Detection

- 120 PMT 8" Hamamatsu PMTs and CAEN readout electronics for scintillation light detections
 - Supported by Los Alamos National Lab funding
 - All PMTs and electronics are in hand

Cosmic Ray Tagger

 Scintillation bars surrounding the cryostat to provide cosmic tagger function: 94% muon flux coverage

‡ Fermilab

Scintillation bars with optical fiber

CRT Panels

14 5/22/2017

Summary and Outlook

- SBND detector is a new LArTPC detector for sterile neutrino measurement and detector R&D
- The detector is being designed, fabricated and assembled by an international collaboration of US, UK, Swiss and Brazil institutions
- The experience of designing, building and operating a large LArTPC is valuable to the future of the neutrino program
- We are on track to finish the detector construction and start cold commissioning in first half of 2019
- A lot of exciting things to be expected in the coming years

