





# The Silicon Micro-strip Upstream Tracker for the LHCb Upgrade









Carlos Abellan on behalf of the UT collaboration







#### **Presentation Outline**



The UT detector

SALT ASIC

Flex cables

• Infrastructure

Conclusions



# The UT detector







### The UT detector



#### Silicon Sensors



#### Key technical aspects:

- D type sensors:
  - Circular cut-out to maximize acceptance next to beam pipe
- A type sensors:
  - Built-in pitch adapters (190um to 80um)
- Top-side biasing via wire bonds rather than conductive glue to backplane



#### The SALT ASIC



SALT128 ASIC prototype done and tested





- Fast shaping time/return to baseline
- 6 bit embedded ADC
- DSP:
  - Pedestal subtraction
  - Zero suppression
  - e-link data formating
- On-chip memory
- SLVS e-links (up to 6, typically 3 active)



### The first UT Module



- First Hybrid produced with current prototype version
- This allows us to make a slice test





#### SALT test infrastructure



Slice test





## **SALT ASIC:** Digital



- Digital functions mostly tested to work as intended (PLL, DLL, I2C, ser, TFC, data packaging,...)
- Pedestal and CM subtraction work exactly as offline simulated
- A new prototype is being designed:
  - Small issue with the ADC sync. with the readout
  - Improvement: saturating logic for computations









## SALT ASIC: Analog



#### Analog results

- Version 1 SALT128 works generally as designed. A calibration DAC can be used to align the baseline of all channels. In a test with a laser beam the pulse shapes are as expected in the channel that receives signal and its adjacent channels. Note the fast baseline return with our novel shaper stage.
- However, there are issues in this version that will be fixed in a newer prototype.







#### **SALT TID tests**



• TID test also performed to see current consumption variation



Thanks to Glasgow colleagues for their help!

X-Rays Tested up to 20Mrad

Rate: 0.45Mrad/h

Annealing monitor: 12h





#### SALT TID tests



0.- Warm up for 12h





#### The flex cables



• Two pieces: flex tape and pigtails



Narrower by almost 50% 23 mm bending radius 55 cm total length



### The flex cables



Tested as a single piece



Over-etching! We get signal attenuation...



#### Infrastructure



- Low voltage power regulation
  - Cable management very relevant! 490x 25mm diameter cables









#### Conclusions



#### SALT ASIC:

- The digital communication works even when using the flex cable. Single ended I2C works even with common mode.
- Digital performance has minor synchronization issues. Analog performance needs some improvements
- We see no crosstalk between ASICs even when using a flex cable
- The ASIC reacts well to the total ionization dose: there is around 3% power consumption variation only
- A new version of the ASIC is ongoing. It should solve the issues we measured.
- Flex Cables
  - Prototypes are produced and perform well
    - Digital transmission lines have some more resistance than planned. Slice tests prove we can live with it. We are trying to improve it anyway.
  - Now facing production and testing procedures: discussion about pricing, manufacturability improvement, test procedure, etc...
- Infrastructure
  - The design of the low voltage infrastructure is quite advanced
    - We need to see how to manage all the cables we have: they have a big cross section that we have to see how to input to the PEPI area
    - We plan to produce some prototypes to have real tests
- Summarizing: the project progresses in all aspects. The ASIC requires some extra refinements in its performance, but our team is working on it.