Commissioning and Integration Testing of the DAQ System for the CMS GEM Upgrade

International Conference on Technology and Instrumentation in Particle Physics 2017 (TIPP2017)

Alfredo Castaneda On behalf of the CMS Muon Group

Texas A&M University at Qatar (TAMUQ)

Project Motivation

- Integration of new detector technology in order to enhance muon reconstruction capabilities in the forward region of the CMS experiment (GE1/1 project)
- Main goals:
 - Maintain an excellent muon reconstruction performance during the high-luminosity LHC scenario (most intense particle flux)
 - By combining information with other CMS muon subsystem (CSCs) reduce trigger rate to allow for low muon transverse momentum thresholds in order to increase sensitivity for several SM and beyond-SM processes

CMS Technical Design Report for the Muon Endcap GEM Upgrade https://cds.cern.ch/record/2021453?ln=en

Gas Electron Multiplier (GEM) Operation Principles

OPTICAL BOARD

GEM INNER FRAME

OUTER FRAME

Large scale trapezoidal triple-GEM detectors

- Trapezoidal shape is needed in order to cover a whole ring in the CMS forward region (each chamber will cover 10 degrees)
- Two triple-GEM chamber modules ("GEMINIs") to be integrated in CMS
- 5 GEMINIs used for GEM Slice Demonstrator
- A big challenge was to build large scale GEM foils and preserve their properties (efficiency, uniformity, etc..)
- Few production sites all around the world

GEM DAQ system

Main hardware and software components for signal readout, data transmission and system configuration

• On-Detector:

- VFAT chips (front-end ASIC)
- GEM Electronic Board (GEB)
- Opto-Hybrid
 - GBT chipset, FPGA
 - Optical links

• Off-Detector:

- Micro-TCA
 - AMC cards
 - AMC13 (Custom AMC card)

Front-End (On-detector) Electronics

- GEM chamber divided into 24 sectors
- Each sector with 128 readout strips that are connected to a VFAT chip
- VFAT readout and control signals are transmitted via E-links running through a flat PCB known as GEM Electronic Board (GEB)
- Signals from the 24 VFATs are sent to an opto-hybrid device for further processing
 - The opto-hybrid consist of a GBT chipset, a FPGA and optical receivers and transmitters for communication with the Off-detector region (including the CSC muon system)

Back-End Electronics

• micro-TCA

- Support 12 AMC cards and 2 MCH
- Data throughput of 2Tbit/s
- Standard for all CMS upgrades

• AMC13

 Standard module to interface to CMS DAQ and provide the Trigger Timing and Control (TTC)

• AMCs

- UW CTP7 (University of Wisconsin Calorimeter Trigger Processor)
- Based on Xilinx Virtex-7 FPGA
- 1 board sufficient for GEM Slice Demonstrator
- 12 boards needed for full GE1/1 upgrade

VFAT basic requirements

• 128 channels

- Continuously sampling the GEM readout strips
- Provide tracking and triggering information
- Time resolution of less than 7.5 ns
 - In order to cope with the duration of the signal produced during the ionization (few ns depending on the gas mixture)
- Tracking information
 - Full granularity after L1A (L1 Accepted event)
- Integrated calibration and monitoring functions
- Radiation resistant (up to 100 Mrads)
- VFAT2 prototype is used for the GEM Slice Demonstrator while for the future upgrade VFAT3 is foreseen

GEM Online Software (xDAQ)

- Designed according to general CMS scheme
- Custom applications derived from standard xDAQ function
- Software is abstracted into several layers
- The software provide access to the AMC boards where the tracking and trigger data from GEM detector is received
- A Finite State Machine is implemented ensuring smooth transitions between "Halt", "Initialized", 'Configured" and "Running" states
- Configurable to perform various scan routines

Official xDAQ webpage https://svnweb.cern.ch/trac/cmsos

GEM Slice Demonstrator in CMS

- Installation of 5 twin triple-GEM trapezoidal chambers ("GEMINIs") in CMS during the end-of-year technical stop (2016-2017)
- Main goal is to gain experience in:
 - Mechanical installation (mounting, services, cabling, etc..)
 - GEM DAQ setup
 - Testing communication with central CMS DAQ and CSC muon system

GEM main frame with the branch controller⁴

Mechanical Installation and services

GEM DAQ operation modes

- Local Calibration Routines: Directly from the opto-hybrid using firmware modules
- Local Run with local readout: Readout directly from the AMC13
- Local run with miniDAQ: Stripped down version of the central DAQ (cDAQ) infrastructure, mimics full path, but runs separately from the other subsystems
- Global Run: Fully integrated into the cDAQ infrastructure, events are included into the CMS data stream

VFAT Calibration Routines

- VFAT calibration routines are performed in order to identify possible malfunctioning or "noisy" channels
- Each VFAT chip comes with a calibration unit which consist of an:
 - Internal pulse generator delivered to each channel
 - Possibility to vary the amplitude of the voltage in every channel (Vcal)
- Number of counts are recorded for each Vcal step (S-curve)
- Additionally there is a 5 bit Trim DAC for each channel that can be used to adjust the slight differences between channels due to fabrication statistical fluctuations (Trimming)

Internal test pulse generator

Characteristic S-curve

Figure 12 S-curve measurement. Sweeping the input signal amplitude (VCal) on a given channel and counting hits for a constant threshold.

GEM VFAT local calibration

- VFAT Local calibration routines are performed to individual channels
- After the trimming process the resulting S-curve plots shows a smooth behavior with no dead channels identified
- S-curve is a common tool used for noise characterization

Summary and Future Perspectives

- A successful installation of 5 twin triple-GEM chambers ("GEMINIs") into CMS was performed during the end of 2016 and beginning of 2017
- Invaluable experience gained on mechanical installation, service integration and DAQ setup that could potentially reduce and optimize the time required during the installation of the full GEM system (GE1/1) in 2019
- GEM local calibrations indicate a good system performance and provide valuable data for monitor of the system and GEM DAQ components
- GEM Slice Demonstrator commissioning work will continue during 2017 in parallel with the regular CMS collision data taking; this will allow for the system to be tested with the rest of the CMS subsystems for the first time

Backup

Fundamentals of Gas detectors

- Charged particles interact with the atoms in the medium
- Muon energy loss is transferred to the electrons of the atoms in the medium, if enough energy is added, the electron is ejected (primary ionization)
- If the ejected electron energy is high enough in its path can ionize other atoms (secondary ionization)
- The charge accumulated by those electrons produced in the ionization is collected in a readout to extract information from the incident muon

http://pdg.lbl.gov/2013/reviews/rpp2012-rev-passage-particles-matter.pdf

Expected particle rate for GE1/1

5/8/2017

GEM Upgrade https://cds.cern.ch/record/2021453?ln=en