

### **R&D on a Scintillating Fiber Tracker with SiPM array** readout for Application in Space



P. Azzarello, F. Cadoux, D. La Marra, <u>C. Perrina</u>, X. Wu ⊠ chiara.perrina@unige.ch



- Astroparticle physics and high energy astrophysics are in a "golden" era thanks to a series of very successful and long-running space and ground based experiments (*eg.* PAMELA, Fermi, AMS-02, H.E.S.S., Auger, IceCube, ...)
  - The multi-messenger/multi-wavelength/multi-platform approach is opening up new possibilities in observation and discovery
  - The hot topics are still: dark matter, comic ray origin, antimatter
- The future of ground-based observation is very brilliant with approved new projects (CTA, LHASSO) and proposed projects (KM3NeT, IceCube Gen2, ...)
- Need complementary future space missions
  - Direct cosmic ray detection: getting to the "knee" (HERD, ...)
  - Close the gamma-ray "MeV" gap (PANGU/e-ASTROGAM, ...)
  - Antimatter and DM search with antiparticles > TeV (ALADINO, ...)

• The University of Geneva has long experience in **silicon** tracker detectors in **Space** (AMS-01, AMS-02, DAMPE).



- New technologies to replace silicon detectors are under study:
  - Our idea is to use scintillating fiber mats instead of silicon strip detectors.



# The SciFi project for Space

- $\circ$   $\;$  Six fiber layers in each mat  $\;$
- 250 μm diameter, Kuraray SCSF-78M
   (LHCb)
- $\circ$  2 lengths
- SiPM on each end of the fiber mat to measure particle with Z = 1 on one side and Z ≤ 20 on the other (two different gains)
- $\circ~~\sim$  9.8 cm width to match for 3 SiPM arrays





- SiPM multi-channel array from Hamamatsu S10943-3183(X)
  - 128 channels per array
  - 96 pixels per channel
  - Pixel size: 57.5  $\mu$ m × 62.5  $\mu$ m
  - Channel size: 230  $\mu$ m × 1500  $\mu$ m

4

# From the project to reality (1)













Extremities polished at EPFL (Lausanne, CH) with diamond head

## From the project to reality (2)

Printed Circuit Board The 128 channels of each SiPM array are split in 4 x 32 lines with flex cables going in opposite direction.





**Front-end electronics board** 2x VATA 64 HDR 16, to readout the 128 MPPC channels.

Four zero-insertion-force (ZIF) sockets to connect the MPPC board.



## Fiber module prototypes



Two fiber modules **ready** and **tested** during a test beam (May 15 - 19, 2017) at CERN with a hadron beam of 100 GeV/c.

• 4 millions events collected

• Data analysis just started



### Preliminary results: Signal distribution



# Space qualification

This kind of detector (fiber + SiPM) has never been used in Space.

- Needed space qualification tests
  - Thermal tests;
  - Vacuum tests;
  - Vibrations.





- Tests on
  - SiPMs;
  - SiPMs mounted on PCB;
  - fiber mats.

## SiPM V<sub>BD</sub> measurements





Flex 4 Channel 11 (<sup>30</sup>/<sub>1</sub>, N) (Np/lp)(I/1)<sup>20</sup>  $V_{\rm BD} = 55.02 \, {\rm V}$ Reverse voltage (V)

### Flex 4 V<sub>BD</sub> corrected for 25 °C







12

V<sub>BD</sub> vs. Temperature

## Flex 4 after thermal cycles V<sub>BD</sub> corrected for 25 °C



13



The discrepancy between V<sub>BD</sub> measured before thermal cycles and after is < 0.16 %

### Readout improvement: SIPHRA chip

AMICSA&DSP2016

- SIPHRA = "Silicon Photomultiplier Readout ASIC"
- New ASIC from IDEAS for space applications
- The circuit has been designed under contract from the ESA with support from the Norwegian Space Center and the University of Geneva.
- 12-bits ADC included.
- One line to readout and digitize one PT100 temperature sensor.
- One single power supply voltage: **3.3 V**.
- Various operation modes available.
  - It can provide in output only the channels with a signal higher than a programmed threshold (one for each channel).
  - Data reduction at ASIC level!
- 1 mW power consumption per channel.
- Test board for SIPHRA chip is being produced and tests will start in the next weeks.



# Conclusions



- Less fragile;
- Flexible geometry;
- No wire bonds;
  - Single photon response;
  - High detection efficiency;
  - High gain at low bias voltage;



- Together with SIPHRA: simplified DAQ electronics;
  - No Op-amp needed, data reduction done at ASIC level;
  - Only 3.3 V power line needed (apart from bias line).

### Disadvantages

- Low Technology Readiness Level (TRL);
- Effects of dark count;
- Dependence of SiPMs on temperature.



- More complete diagnostic tool will be introduced
  - Calibration with LEDs;
  - Calibration with radioactive sources;
- Space qualification tests to increase the TRL
  - Thermal tests;
  - Vacuum tests;
  - Vibrations.
- Tests on
  - SiPMs;
  - SiPMs mounted on PCB;
  - Fiber mats;
  - Complete modules;
  - Planes made of more modules.







#### Solid State Division



#### **Principle of operation**



#### > Basic operation

- Each pixel operates separately in Geiger-mode
- Each pixel outputs a same amplitude pulse
- Pulse generated by multiple pixels are output while superimposed onto each other (detected at the same time)
- No position information

Copyright @ Hamamatsu Photonics K.K. All Rights Reserved.



#### Solid State Division



### **MPPC Technology Overview**

#### >What is an MPPC?

Multi-Pixel Photon Counter

 a new type of photon-counting device
 made up of multiple APD pixels
 operated in Geiger mode

#### ➤Features

- Small size / light weight
- Room temperature operation
- Low bias operation : ~70V
- High gain: 105 to 106
- Excellent timing resolution
- Insensitive to magnetic fields
- Simple readout circuit operation



Solid State Division



#### **Geiger-mode operation**



Copyright © Hamamatsu Photonics K.K. All Rights Reserved.

#### Product outline

- $\cdot \text{ MPPC}$
- $\cdot$  Effective photosensitive area 0.23×1.5mm, 128ch. Array ( 64ch/chip × 2chip )
- $\cdot$  Surface mounted package with 2 holes



96 pixels = 4 x 24 pixels

| Parameter                              | $\mathbf{Symble}$ | Symble Rating                              |         |
|----------------------------------------|-------------------|--------------------------------------------|---------|
| Effective active area / channel        |                   | $230(X) \times 1500(Y)$                    | $\mu m$ |
| GAP between channels<br>(on chip)      |                   | 20                                         | μm      |
| GAP between channels<br>(between chip) |                   | $250~\pm~50$                               | $\mu m$ |
| Number of channels                     |                   | 128 (64 × 2chip)                           | ch      |
| Number of pixels / channel             |                   | $4(X) \times 24(Y)$                        |         |
| Pixel size                             |                   | $57.5(\mathrm{X}) \times 62.5(\mathrm{Y})$ | μm      |

| Breakdown voltage                               | Vbr                 |                  | 40  |                   | 65  | V             |
|-------------------------------------------------|---------------------|------------------|-----|-------------------|-----|---------------|
| Operating voltage                               | Vop                 |                  |     | $V_{BR}+2.5$      |     | V             |
| Vop variation between channels                  |                     |                  |     | 0.4               | 1.0 | V             |
| Dark current / channel                          | ID                  | VR=Vop           |     | 20                | 100 | nA            |
| Cross talk                                      |                     | VR=Vop           |     | 8                 | 15  | %             |
| Terminal capacitance / channel                  | $\operatorname{Ct}$ | VR=Vop<br>100kHz |     | 12                |     | $\mathrm{pF}$ |
| Gain                                            | М                   | VR=Vop           |     | $2 \times 10^{6}$ |     |               |
| Quenching resistance                            | Rq                  |                  | 120 | 160               | 240 | kΩ            |
| Temperature coefficient<br>of operating voltage |                     |                  |     | 60                |     | mV<br>/℃      |

| Spectral response range                 | λ                    | VR=Vop |    | 320 to 900 | nm     |
|-----------------------------------------|----------------------|--------|----|------------|--------|
| Peak sensitivity wavelength             | $\lambda \mathbf{p}$ | VR=Vop |    | 450        | <br>nm |
| Photon detection efficiency<br>at λp *1 | PDE                  | VR=Vop | 25 | 35         | <br>%  |



# Flex 4 before thermal cycle V<sub>BD</sub> NON corrected by temperature



#### Breakdown voltage vs. channel id at 4 step bw

# Flex 4 after thermal cycles V<sub>BD</sub> NON corrected by temperature



#### Breakdown voltage vs. channel id at 4 step bw



- Altera Cyclone V FPGA.
- FEE board analogue signal digitization.
- Communication/data transfer via an USB3 port.
- DAQ architecture developed by the DPNC electronics group.
- Common digital interface and related control software, to be used by different experiments.

