

CATIC

FRONT-END ELECTRONICS for IMAGING/TIMING CALORIMETRY

Christophe de LA TAILLE

TIPP 2017 Beijing

Evolution of calorimetry

- 3D calorimetry : eta, phi, Energy
- 4D calorimetry : x,y,z,E
- 5D calorimetry : x,y,z,E,t
 - High granularity=> Millions of channels = > Low power !
 - Power pulsing ~1% for ILC
 - Low power + C02 cooling for HL-LHC
 - Energy measurement : Large dynamic range
 - MIP sensitivity => low noise (~0.1 fC)
 - Up to thousands of MIPs (~10 pC)
 - Timing information
 - Nice addition for ILC for PID : few ns is enough
 - Crucial for HL-LHC : pileup mitigation, need few tens of ps
 - Embedded electronics vs data out
 - Daisy chain and low power busses for ILC
 - High speed e/optical links for HL-LHC
 - Radiation levels
 - Negligible at an ILC
 - Daunting at HL-LHC : >100 Mrad 1^E16N
- See talk by Eva SickIng and referred talks

CALICE technological prototypes

- R&D on imaging calorimetry §
 - Particle Flow Algorithms [
 - Electronics crucial (low noise, low power, fully integrated)
 - Several innovative features (power pulsing, SiPM...)
 - Validation of technological prototypes
 - Common R/O features
 - Worldwide collaboration

- 25 mm² Si pads 300 µm thick
- 4 wafers per ASU 18x18 cm
- Readout 16 SKIROC2 chips 64ch
- Chip on board or BGA package
- Daisy-chain readout
- MIP/noise ~18

© V. Boudry ECFA workshop Santander 2016

 $\langle \epsilon \rangle_{CHIP} > 97\%; \langle \epsilon \rangle_{LAYER} \ge 98.3\%$

C. de La Taille Front-End elecectronics TIPP 2017

SKIROC2 readout ASIC

- 64-channel Silicon Kalorimeter Integrated Read-Out Chip
 - Autotrigger @ $\frac{1}{2}$ MIP = 2 fC
 - Charge measurement 15 bits in two gains
 - 16-deep Analog memory
 - Low power 25µW/Ch with power pulsing
 - Embedded readout (see SPIROC)
 - SiGe 350 nm, produced in 2010

KPiX – System on a Chip

KPiX is a 1024 channel ASIC to bump bond to Si detectors, optimized for the ILC (1 ms trains, 5 Hz rate):

- Low noise dual range charge amplifier w/ 17 bit dynamic range.
- Power modulation w/ average power <20 μ W/channel (ILC mode).
- Up to 4 measurements during ILC train; each measurement is amplitude and bunch number.
- Digitization and readout during the inter-train period.

One pixel,

- Internal calibration system
- Noise Floor: $0.15 \text{ fC} (1000 \text{ e}^-)$
- Peak signal (Auto-ranging) 10 pC
- Trigger Threshold

C. de La Taille Front-End elecectronics TIPP 2017

© J. Brau ECFA workshop Santander 2016 https://agenda.linearcollider.org/event/7014/contributions/36893/

Sensor Traces

In present design, metal 2 traces from pixels to pad array run over other pixels: parasitic capacitances cause crosstalk.

New scheme has "same" metal 2 traces, but a fixed potential metal 1 trace shields the signal traces from the pixels.

C. de La Taille Front-End elecectronics TIPP 2017

Issues (both)

- Noise, crosstalk, « square events » « monster events »
- Retriggering, digital noise
- Connectors and power supplies

AHCAL/ScECAL : SiPM readout

Scintillating tiles and SiPM

60

- Pioneered by DESY (EUDET/AIDA)
- Chip embedded in detector : **IOW POWER**
- SPIROC : Silicon Photomultiplier Integrated Readout Chip
 - Variant of skiroc
 - 36 channels autotrigger 15bit readout
 - Energy measurement : 15 bits in 2 gains
 - Autotrigger down to ½ p.e. (80 fC)
 - Time measurement to ~1 ns
 - Power dissipation : 25µW/ch (power pulsed)

mega

$(0.36m)^2$ Tiles + SiPM + SPIROC (144ch)

SPIROC : System On Chip

SPIROC2 performance

SiPM SPECTRUM with Autotrigger

- 2.5 A switched at 5 Hz
- 150 µs settling time

C. de La Taille Front-End elecectronics TIPP 2017

SDHCAL RPC calorimeter

- Semi-digital Hadronic calorimeter (SDHCAL) technological proto with up to 50 layers built in 2010-2011.
- Scalable readout scheme successfully tested
- 10 fC threshold on 1 m² (1 fC with micromegas)
- Complete system in TB with 460 000 channels, AUTOTRIGGER mode and power pulsing (5%)

- Stringent requirements for Front-End Electronics
 - Low power (< 10 mW),
 - low noise (< 2000 e-) MIP ~ 1-4 fC
 - High radiation (200 Mrad, 10^E16 N)
 - System on chip (digitization, processing...)
 - High speed readout (5-10 Gb/s)
 - ~ 10 million channels

HGCAL readout ASIC

HGROCv1 features:

- 32 channels
- Dual polarity
- TOT with 2 variants:
 - Low power @ Imperial
 - DLL @ OMEGA (CERN based)
- TOA (CEA)
- 11-bit SAR ADC (OMEGA)
- Simplified Trigger path
 - Only sum by 4
 - No 0-suppress (4+4 log)
- Data readout to be defined
- SC with triple voting (shift register like SK2-CMS)
- Many digital block with simplified architecture
- Services
 - Bandgap from CERN
 - PLL from CEA-IRFU
 - 10b DAC from TV2

C. de La Taille Front-End elecectronics TIPP 2017

mega

London

Imperial College

LSB

VFE architectural issues

- key issues to be studied :
 - Noise
 - Resolution
 - Stability
 - Linearity
 - Accuracy
 - Calibration
 - crosstalk
 - Radiation
 - Timing

ADC

- Systematic effects

100 fC (~30

MIP)

ΤΟΤ

Charge

(fC)

C. de La Taille Front-End elecectronics TIPP 2017

Testbeam setup(s)

- Boards with SKIROC2 used in 2016 [UCSB, FNAL,UM]
- Hexaboards with SK2_CMS in 2017 [CERN]

ADC counts in Layer8

- A constant concern in calorimetry
 - Coherent noise extracted by comparing direct and alternate sums on n channels (n=64) : DS = ∑ ped[i] ; AS = ∑ (-1)ⁱ ped[i]
 - Incoherent noise IN = rms(AS) / \sqrt{n}
 - Coherent noise : $CN = \sqrt{var(DS) var(AS)} / n$
- Need to show that CN / IN ~ 10% can be obtained at system level

C. de La Taille Front-End elecectronics TIPP 2017

Imperial College London

ICI

Borg

Ч.

 \odot

Time of arrival (ToA)

- TOA measured with internal TDC and corrected for time walk
- Constant term = 50 ps
- Noise term = 10 ns / Q(fC) (~4 ns/Q expected)
- What can be obtained at system level ?

Imperial College London

J. Borg ICL

0

Timing at High-Luminosity LHC

• Pileup mitigation with fine time information (~25 ps)

© G. tully CERN seminar on timing /https://indico.cern.ch/event/633341/

HGCAL timing performance

- CMS HGCAL testbeam measurements
- Jitter : j ~1 ns / S/N
 - But S and N depend on BW...
 - Parts come from detector and from electronics

mega

https://indico.cern.ch/event/468486

Time walk and Time jitter Omega

Timing optimization : common view

• Jitter due to electronics noise:

$$\sigma_t^{J} = \frac{N}{\frac{dV}{dt}}$$

- also presented as j = tr / (S/N)
- dV/dt prop to BW, N prop to $\sqrt{BW} =>$ jitter prop to $1/\sqrt{BW}$
- \Rightarrow « the faster the amplifier the better the jitter ? »
- \Rightarrow « High speed preamps need to be low impedance (50 Ω or less) »

NB :
$$tr = t_{10-90\%} = 2.2 \text{ tau.}$$

 $f_{-3dB} = 1/2\pi tau = 0.35 / t_{10-90}$
 $f_{-3dB} = 1 \text{ GHz} <-> t_{10-90\%} = 300 \text{ ps}$

Signal : detector current

- <u>PN diode</u> w =200µm
- Very short rise time : tr~10ps
- Relatively long «drift time» : td~2ns

- <u>SiPM detector (10pe-)</u>
- very short rise time : tr~10 ps
- Short duration : td~100ps),

© Harmut Sadrozinski (Santa Cruz) "the beautiful risetime of the detector is spoilt by the electronics"

C. de La Taille Front-End elecectronics TIPP 2017

voltage vs current sensitive

 Example : 10 fC – 1 ns signal from 1-10-100 pF sensors into 50 Ω (current) or 50k (voltage) preamp

Examples of pulse shapes

(NU) V

- SiPM pulse : Q=160 fC, C_d=100 pF, L=0-10 nH, R_S=5-50 Ω
- Sensitivity to parasitic inductance
- Choice of R_{S} : decay time, stability
- Small R_S not necessarily the fastest
- Convolve with current shape... (here delta)

C. de La Taille Front-End elecectronics TIPP 2017

nega

1-10 nH

 \widetilde{M}

Detector impedance and input voltage

1 GHz

109

- 1 GHz, Cd=few tens of pF, input signal width <1ns
- Cd>1 pF, Zs@1GHz dominated by Cd
- Rise time: tr= td when td<< $R_S C_d$ and tr= $R_S C_d$ when td>> $R_S C_d$

10¹⁰

High speed amplifiers

- Response to very short pulse
- Broadband
 - Zin=Rs (50 Ohm)
 - Vin = Q/Cin
 - $V_{OUT} = -G_m R_F \frac{Q_{IN}}{C_d}$
- Transimpedance
 - Zin ~ Zf/G ~ 1/gm

-
$$\mathbf{V}_{\mathbf{OUT}} = \frac{\frac{1}{G_{\mathbf{m}}} - \mathbf{R}_{\mathbf{F}}}{1 + j\omega \frac{C_{\mathbf{d}}}{G_{\mathbf{m}}}} \mathbf{I}_{\mathbf{IN}} \approx -\mathbf{G}_{\mathbf{m}} \mathbf{R}_{\mathbf{F}} \frac{\mathbf{Q}_{\mathbf{IN}}}{\mathbf{C}_{\mathbf{d}}}$$

Same response at High Frequency

Signal and noise in Broadband amplifiers

- Signal of duration t_d, across capacitance Cd with BB amplifier of impedance R_S
- Signal scales as 1/ C_{d} if $R_{S}C_{d}$ >> t_{d} and $C_{PA}<< C_{d}$

$$S = V_{OUT} = G \frac{Q_{IN}}{C_d}$$

- Rise time is the convolution of signal duration t_d and amplifier risetime $t_{10\mathchar`embed{PA}}$

$$t_r \approx \sqrt{t_{10-90_PA}^2 + t_d^2}$$

Noise is given by the preamp noise density e_n and bandwidth

$$N = G.e_n \sqrt{\frac{\pi}{2}} BW = \frac{G.e_n}{\sqrt{2t_{10-90_{PA}}}}$$

• Jitter is then :

$$\sigma_t^{J} = \frac{N}{dV/dt} = \frac{e_n C_d}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^2 + t_d^2}{2t_{10-90_PA}}}$$

C. de La Taille Front-End elecectronics TIPP 2017

• Optimum value: $t_{10-90 PA} = t_d$ (current duration)

$$\sigma_t^J = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$$

Dominated by sensor Electronics only gives e_n

- Electronics noise e_n given by input transistor transconductance g_m:
 - Typically ~1 nV/ \sqrt{Hz} at I_D = 0.5 mA

 $e_n = \sqrt{\frac{2kT}{g_m}} \approx \frac{2kT}{\sqrt{g_m}}$

- Scales with the square root of current in transistor (weak inversion)

Examples

- CMS HGCAL : PIN diode thickness 300 µm A=25 mm²
 - $C_d = 8 \text{ pF } e_n = 1 \text{ nV}/\sqrt{\text{Hz}} t_d = 3 \text{ ns} \sigma = 420 \text{ ps/Q(fC)}$
 - $1 \text{ MIP} = 3.8 \text{ fC} \Rightarrow \sigma = 110 \text{ ps/#MIP}$ (~200 ps measured)
- NA62 tracker : PIN diode thickness 300 µm A=0.09 mm²
 - $C_d = 0.1 \text{ pF } e_n = 11 \text{ nV}/\sqrt{\text{Hz}} t_d = 3 \text{ ns} \sigma = 60 \text{ ps/Q(fC)}$
 - $1 \text{ MIP} = 3 \text{ fC} => \sigma = 20 \text{ ps/#MIP}$ (~60 ps measured)
- ATLAS HGTD : LGAD diode thickness 50 µm A= 2 mm² G = 10
 - $C_d = 2 \text{ pF } e_n = 2 \text{ nV}/\sqrt{\text{Hz}} t_d = 0.5 \text{ ns} \sigma = 50 \text{ ps/Q(fC)}$
 - 1 MIP = 5 fC (G=10) => σ = 10 ps/#MIP (~30 ps measured)
- SiPM G = $1^{E}6$
 - $C_d = 300 \text{ pF } e_n = 1 \text{ nV}/\sqrt{\text{Hz}} t_d = 100 \text{ ps} \sigma = 3 \text{ ns/Q(fC)}$
 - 1 pe = 160 fC => σ = 20 ps/#pe (~60 ps measured)

- At given Q, $C_d \sim 1/th$, $t_d \sim th$, expect j $\sim 1/\sqrt{th}$

Evaluate jitter(Q) with thickness (th)

- $dV/dt = Q / C_d t_d = Cte$
- Better jitter : longer signal, smaller BW
- Not seen in testbeam setup because 50 Ω amplifier not optimum at low capacitance
- Jitter(le

1

1

727

568

But m

th

en (nV/ \sqrt{Hz})

td (ns)

jitter/Q(fC)

jitter/MIP

1

3

1021

380

420

109

Expected jitter with thickness

er(MIP) even better because more charg more Landau fluctuations					
CMS	100um	200um	300um	200um	
th (um)	100	200	300	210	
Cd (pF)	23	12	8	14	;
fC/MIP	1,3	2,6	3,8	2,7	

1

2

514

201

- 2 mm² LGAD 50 µm thick
- SiGe discrete readout BW = 2 GHz
- Jitter measured : j = 200 ps / Q(fC)
 - MIP = 4.6 fC at G = 10, t_d = 0.5 ns, C_d = 2 pF, e_n = 1 nV/ \sqrt{Hz}
 - Theory : j = 50 ps/Q(fC)
- ATLAS HGTD will use 2 mm² LGADS for ~30 ps timing with G = 10-20

mega

C. de La Taille Front-End elece

- SPTR
 - FWHM ~200 ps
 - Rms ~ 80 ps

Single photon time resolution of state of the art SiPMs

M.V. Nemallapudi,¹ S. Gundacker, P. Lecoq and E. Auffray

CERN, 23 Rue de Meyrin, Geneva, 1211-CH

C. de La Taille Front-End elecectronics TIPP 2017

Going to lower SPTR

Omega

• Expect ~ 20 ps/pe

Count 200

180

160

140

120

100

80

60 H

40

20

0^[]

-14

-15

-13

- NINO risetime ~1 ns
- Test with PETIROC2 (tr = 300 ps)
 - SPTR = 67 ps rms (180 ps FWHM)
- Possible effect of stray inductance
- Furhter studies in FAST framework

SPTR

histo

3465

-13.68

0.1671

 186.2 ± 5.1

 -13.65 ± 0.00

-10

Delay (ns)

 0.06784 ± 0.00130

0

Entries

Std Dev

Constant

Mean

Prob

Mean

Sigma

Sigma : 67.84 ps

FWHM : 160.10 ps

-12

-11

Summary

- Imaging calorimeters ramping up !
 - Require highly integrated R/O electronics : System On Chip
 - Low power, low noise, high speed, large dynamic range
 - Timing capability down to a few tens of ps
 - Lots of system issues
- Timing performance dominated by sensor characteristics
 - Capacitance, duration, MIP charge
 - Theory predicts :
 - Electronics affects only $g_m \sim Id/2U_T$

$$\sigma_t^{J} = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$$

Work getting organized towards 10 ps (1 ps ?) timing

Evolution of technologies

- More and more functions are integrated inside chips (ASICs)
- Evolution of technologies make them more and more performant but more and more complex
- Cost increases …
 - MPW costs :
 - 350 nm : 1 k€/mm²
 - 130 nm : 2 k€/mm²
 - 65 nm : 6 k€/mm²
- Chip size also...
- CERN targets 65/130 nm
- SiGe in AIDA2020

ALTIROC

- ALTIROC = ATLAS LGAD Timing ROC
 - 20 ps timing measurement with LGAD sensors for ATLAS HGTD
 - Jitter : j = 110 ps/Q(fC) @ Cd=2 pF
 - Test chip bondable to sensors of 1x1 mm² and 2x2 mm², submitted in dec 16 in TSMC 130n
 - High speed preamp (1 GHz) + constant fraction discriminator (20 ps)
- Will evolve to 400 ch chip
 - With internal TDC, bump bonded to sensor.
 Collaboration with SLAC

HGTD architecture

C. de La Taille Front-End elecectronics TIPP 2017

CE in SiGe 130nm and in TSMC 130 nm

- Broad Band amplifier CE configuration
- Same current (Ic=700 µA), same Rf=4K, vdd=1.2V
- Higher gain with SiGe but larger noise due to rbb'

nega

	CE 10pF TSMC 130 nm	CE 10pF SiGe 130nm Trans size= 20
$\frac{\text{td}=10\text{ps}}{\text{Qin}=\text{lin.td}=}$ $100\mu\text{A}.10\text{ps}=1\text{fC}$ $\lim_{\text{width}=td} \bigoplus_{n=1}^{t} C_{n} = \frac{Q_{N}}{C_{d}} = \frac{I_{N}I_{d}}{C_{d}}$	out=3.7mV tr=220ps BWa=1.6 GHz rms=1.3 mV S/N=2.8 oj=220ps/2.8=78 ps	out=8.95 mV tr=176 ps BWa= 2GHz rms=3.14mV S/N=2.85 σj=176ps/2.85=60 ps
td=1ns and tr_ampli=td CL=100fF Qin= 1µA.1ns=1fC	out=3.52mV(CL=100fF) tr=1.1ns BWa=440MHz rms=0.66mV S/N=5.3 oj=1100ps/5.3=206 ps	out=7.5mV (CL=110fF) tr=1.1 ns BWa=440MHz rms=1.4 mV S/N=5.4 σj=1.1ns/5.4=204 ps

CE in TSMC 130 nm: jitter vs tr (BW) and td

- With I source trans (0 for 2 pF or 1.8mA)
- Follower (connected to a discriminator)
- Normalization to 1 fC, square pulse.
- LGAD signa would give 6 fC/MIP

$$\sigma_t^{J} = \frac{\sigma_N}{\frac{dV}{dt}} = \frac{t_r}{\frac{S}{N}} = \frac{\sqrt{t_{r_ampli}^2 + t_d^2}}{\frac{S}{N}}$$

POWER: 0.5mW/ mm²

CE	Cd=2pF (Id=220 μA)	Cd=20pF (Id=2.1 mA)
td=10ps Qin=lin.td= 100µA.10ps=1fC $\prod_{in} \bigoplus_{in} C_{d} = \frac{Q_{iN}}{C_{d}} = \frac{I_{iN}t_{d}}{C_{d}}$ width=td =	out = 6.9 mV out_fol=6.1 mV tr_fol=284 ps BWa=1.2 GHz rms=0.485 mV S/N=12.6 σj=284ps/12.6=23 ps	out=3.37 mV out_fol=3.1 mV tr_fol=290 ps BWa=1.2 GHz rms=1.2 mV S/N=2.6 oj=290ps/2.6=110 ps
td=1ns and tr_ampli=td CL=100fF Qin= 1µA.1ns=1fC	out=6.4 mV out_fol=5.9 mV tr_fol=1.1ns BWa=410 MHz rms=0.39 mV S/N=15 σj=1.1ns/15=73 ps	out=3.2 mV out_fol=3.05 mV tr_fol=1.1 ns BWa=440 MHz rms=0.8mV S/N=3.8 σj=1.1ns/3.8=288 ps

SKIROC2_CMS for HGCAL

Cf

- new SKIROC2 for CMS
 - Optimized version for CMS testbeam, pin to pin compatible
 - **Dual polarity charge preamplifier**
 - Faster shapers (25 ns instead of 200 ns)
 - 40 MHz circular analog memory, depth= 300 ns
 - TDC (TAC) for ToA and ToT, accuracy : ~50 ps
 - Submitted jan 2016 SiGe 350nm
- Tests :
 - First tests on BGA testboards
 - 4-5 boards will be equipped

Time over Threshold (ToT)

- TOT measured in current sensitive config : Rf=20k Cf=300f
- ADC range : 0-500 fC TOT above
- energy reconstruction around 500 fC, calibration, pedestal evaluation

C. de La Taille Front-End elecectronics TIPP 2017

Imperial College London

Borg ICL

J.

0

Results : CMS pin diodes caracterization

- Measured jitter In testbeam [A. Martelli et al.] :
 - jitter ~ 1 ns/Q(fC) (+) 20 ps

Timing Resolution (Mean Silicon - MCP) vs Mean Sensor Effective Signal

F2320P_218 5x5mm² diode e⁻ 50 GeV: 4X₀ lead absorber, 200 µm sensor [OGe [ADC] 50% constant fraction time 2500 2000 amplitude 1500

1000

mega

18 20 Time [ns]

NINO chip

- NINO is a 8-ch preamp/discriminator chip
- Design : F. Krummenacher, F. Anghinolfi et al. (NIM A533 2004)
- Cd = 30 pF P = 30 mW/ch IBM 0,25 μ m
- LVDS output to drive HPTDC (CERN)

25 mm CMOS technology	8 channel/chip
Input impedance	~50 Ohm, adjustable
Power consumption	27 mW/channel
Supply voltage	+2.5 V
Input peaking time	1 ns
Timing jitter	~10 ps
Sustainable rate	>>10 MHz/chan
Input signal range	30 fC – 2 pC
Noise	< 2.5 x 103
Discriminator level	10 – 100 fC
Outputs	LVDS

- RICH detector NA62 CERN R7400 PMT readout Nucl.Phys.B, Proc. Suppl. 215 (2011) 125
- TOF analysis in PET Gundacker, S. et al. PoS PhotoDet2012 (2012) 016
- Multi-anode Micro-Channel Plate (MCP) PMT J. Instrum. 9 (2014) C02025
- TORCH time-of-flight detector In: J. Instrum. 9 (2014) C02025

PETIROC2 DESCRIPTION

Omega

- Time of Flight read-out chip with embedded TDC (25 ps bin) and ADC
- Dynamic range: 160 fC up to 400 pC
- 32 channels (negative input)
 - 32 trigger outputs
 - NOR32_chrage
 - NOR32 time
 - Charge measurement over 10 bits
 - Time measurement over 10 bits
 - One multiplexed charge output
- Common trigger threshold adjustment and
 6bit-dac/channel for individual adjustment
- Variable shaping time of the charge shaper
- 32 8bit-input dac for SiPM HV adjustment
- Power consumption 6 mW/ch
- Front-end
 - Broad Band SiGe fast amplifier
 - Fast SiGe discriminator
 - 1 GHz overall bandwidth, gain = 25

PETIROC2A: performance

Signal and noise in Broadband amplifiers

- Signal of duration td, across capacitance Cd with BB amplifier of impedance R0
- Signal scales with 1/ Cd if R0Cd>>td and C_{PA}<<Cd

$$S = V_{OUT} = G \frac{Q_{IN}}{C_d}$$

• Signal rise time is the convolution of signal duration td and amplifier risetime t_{10-90 PA}

$$\frac{dV}{dt} == \frac{G.Q_{in}}{C_d \sqrt{t_{10-90_{PA}}^2 + t_d^2}}$$

• Noise is independent of Cd

$$N = G.e_n \sqrt{\frac{\pi}{2}}BW = G.e_n \sqrt{\frac{\pi}{2}}\frac{0.35}{t_{10-90_PA}} = \frac{G.e_n}{\sqrt{2t_{10-90_PA}}}$$

nega

Ġ

C d

I in

Signal and noise on Broadband amplifiers

• Jitter is given by

(

$$\sigma_t^{J} = \frac{N}{dV/dt} = \frac{e_n}{\sqrt{2t_{10-90_PA}}} \frac{C_d \sqrt{t_{10-90_PA}^2 + t_d^2}}{Q_{in}} = \frac{e_n C_d}{Q_{in}} \sqrt{\frac{t_{10-90_PA}^2 + t_d^2}{2t_{10-90_PA}}}$$

• Optimum value: $t_{10-90_{PA}} = t_d$ (current duration)

$$\sigma_t^J = \frac{e_n C_d}{Q_{in}} \sqrt{t_d}$$

Dominated by sensor Electronics only gives en

• Electronics noise en given by input transistor transconductance :

nega

Vin and Vout CE, TZ Cd=10pF td=10ps 1fC

Transient Response

Output noise CE and TZ for Cd= 10pF 100pF

C; de La Taille fast FEE for timing Benodet 2017

Timing with waveform samplers

voltage noise Δu signal height U timing uncertainty Δt Δu Δt t_r © Sebastian White TIPP2014

Optimistic for S/N and neglects noise autocorrelation

today:

optimized SNR:

next generation:

Δ +	Δu	1
$\Delta \iota =$	U	$\sqrt{3f_s\cdot f_{3dB}}$

1

Assumes zero aperture jitter

nega

U	$\Delta \boldsymbol{U}$	f_{s}	f _{3db}	Δt
100 mV	1 mV	2 GSPS	300 MHz	~10 ps
1 V	1 mV	2 GSPS	300 MHz	1 ps
1V	1 mV	10 GSPS	3 GHz	0.1 ps