Radiative Decay Counter for active background identification in MEG II experiment

R. Iwai The University of Tokyo

Technology and Instrumentation in Particle Physics (TIPP) 24th May 2017 Beijing, China

Outline

- I. Introduction
- II. Radiative Decay Counter
- III. Commissioning
- IV. Upstream detector option
- V. Summary and outlook

I. Introduction

 \mathbf{e}^{-}

MEG II experiment

- Lepton flavor violating decay µ+→e+γ will be an evidence of BSM if discovered
 - ► Best upper limit : $\mathcal{B}(\mu + \rightarrow e + \gamma) < 4.2 \times 10^{-13}$ (90% C.L.) (MEG, 2016)
 - Upgrade experiment aiming at sensitivity O(10-14) (MEG II, 2018-)

Dominant BG : Accidental coincidence of energetic e+ & γ

I. Introduction

MEG II detector

- → High intensity DC μ + beam : 3×10⁷ μ +/s (MEG) → 7×10⁷ μ +/s (MEG II)
- Keys of detector upgrade : Suppress accidental background
 - Improved energy, timing, angular resolutions (~×2) of e+ & γ detectors
 - Low mass µ+ stopping target & e+ detecter
 - New detector for tagging BG γ from RMD

II. Radiative Decay Counter Radiative Decay Counter (RDC)

RDC identifies BG γ from RMD

- By detecting time coincident low momentum e+
- MEG II sensitivity improvement with RDC:

 $5.0 \times 10^{-14} \rightarrow 4.3 \times 10^{-14} (-16\%)$

- Requirements for detector :
 - Compact detector to install inside magnet bore
 - Able to distinguish high hit rate of Michel e+ (~MHz)
 - Finely segmented, distinguish by E_{e+}

II. Radiative Decay Counter

Detector design

Plastic scintillator

- Measure e+ timing
- Fast rise & decay time
- 12 scintillator bars
 (I = 7-19 cm, w = 1-2 cm)
- Multi-SiPMs readout at two ends

LYSO (Lutetium Yttrium Orthosilicate) crystal

- Measure e+ energy
- Fast decay time, large light output
- 76 LYSO crystals
 (2×2×2 cm³)
- Single SiPM readout

Plastic scintillator part

Counter design

II. Radiative

Decay Counter

Plastic scintillator : Saint-Gobain BC418

SiPM : Hamamatsu S13360-50PE

- Surface mount type
- Active area : 3×3 mm²
- Pixel pitch : 50 µm
- > 2-3 SiPMs connected in series
 - └─ For reducing *N*_{channel}, shorter waveform

+ Performance check with β -ray source

II. Radiative Decay Counter

LYSO crystal part

Readout scheme

LYSO crystal (Shanghai Institute of Ceramics)

SiPM : Hamamatsu S12572-025

• Active area : 3×3 mm²

- Pixel pitch : 25 µm
- Pressed on back of each crystal (for easy maintenance)
- Crystal & SiPM are coupled with optical grease

Performance check with γ-ray source

II. Radiative Decay Counter

Installation

- RDC detector is inserted in spectrometer magnet bore with moving arm
 - With 2 water pistons behind the stage

Measuring position

Parking position (during calibration target for LXe is inserted)

Commissioning

- First commissioning of RDC detector in 2016
- Demonstrated BG identification capability with high intensity μ + beam (10⁸ μ +/s)
- Tested trigger & DAQ (WaveDREAM)

Calibration

Fitting function : (γ peaks + β decay spectrum) \otimes Gaussian smearing ($\sigma = E_{res}$)

Data taking

- Conditions of data taking :
 - Trigger : Any hit of BGO crystals
 - Energy threshold : ~35 MeV
 - DAQ rates : ~5 Hz
- Example waveforms of RMD candidate

Analysis

- Analysis to reject events triggered by cosmic-ray
 - 1 Require largest hit in central BGO crystals

III. Commissioning

② Reject too large energy deposit (> 55 MeV)

Rejected 98% of triggered events

Observed clear timing peak of RMD events

* RMD events with large E_{e+} were also rejected due to low E_{Y} threshold

Next plan : Measure detection efficiency with LXe detector for precisely known E_Y

Upstream detector option

- Aiming further background reduction by installing RDC upstream the µ+ stopping target
 - Developing detector operational in μ + beam

IV. Upstream

detector option

 \square low material, high hit rate, radiation hard...

Provisional design : Use thin multi-clad scintillating fiber

Upstream detector option

Small influence on beam transportation

IV. Upstream

detector option

- Beam spot size increased ~7.5% with mockup
 - \sqsubseteq Small influence is expected in physics analysis

 Change of µ stopping rate -0.5% (according to simulation result)

- Sensitivity improvement with 2 RDC detectors :
 - ► $5.0 \times 10^{-14} \rightarrow 3.9 \sim 4.1 \times 10^{-14} (22 28\%)$

* Depends on capability of pileup μ^+ rejection

- Next plan : Irradiation test of scintillating fiber at Proton Irradiation Facility at Paul Scherrer Institut
 - μ+ hit rate : 500 kHz, total dose : O(10⁵) Gy (central fiber) for 3 years physics run
 - R&D for alternative plan : Radiation hard thin synthetic diamond detector

Summary and outlook

- In MEG II, RDC will be newly installed for active background identification.
 Sensitivity will be improved by 16%
- RDC identifies dominant background γ by detecting time coincident low momentum e+
- Construction & commissioning was successfully completed in 2016.
 Capability of background identification was demonstrated.

- Performance of RDC will be precisely checked with LXe detector in this year
- R&D for upstream detector installed in high intensity µ+ beam is ongoing (sensitivity improvement with 2 RDC : 22-28%)

Backup

LYSO SiPM support

DAQ electronics

WaveDREAM boards (developed in PSI)

- Combined following devises
 - Pre-amplifier (gain : 1-100)
 - · Waveform shaper
 - Waveform digitizer (based on DRS4)
 - HV supply for SiPM
- Non-linearity of WaveDREAM readout amplitude was found
 - · All BGO + LYSO channels were scanned by using pulse generator
 - $\cdot \,$ This problem will be fixed

•

Event display

Marker size : energy, Marker color : timing

Event selection

21

2 event cuts for good RMD events selection with BGO

•

1. Require the largest hit in fiducial volume

2. Cut with energy sum (below 55 MeV)

98% of cosmic-ray events were rejected

Influence on μ beam

Comparison of beam spot size at target position

Dummy RDC (230 µm MYRALR foil)

٠

Scan hit rate for x-y with APD

• $\sigma_x \times \sigma_y$ increased by ~16%

	σ _x (mm)	σ _y (mm)
normal run	10.7 ± 0.2	10.4 ± 0.2
dummy test	11.5 ± 0.2	11.2 ± 0.2

x (mm)

10

20

-10

- Investigated optimal degrader thickness (min. step = 10 μm)
- Stopping rate loss ~0.54%

Effect of larger beam spot

- μ stopping distribution is stretched along beam axis due to slanted angle of the target
 - Influence on e⁺ tracking could be enhanced

- Studied influence on e⁺ tracking performance with Geant4
 - (1) Efficiency loss for signal e⁺ : 0.8% w/ RDC
 - **②** Drift chamber hit rate : increased 0.8% w/RDC
 - ③ Reconstructed momentum resolution : degraded 1.3% w/RDC
- Conclusion : Influence on μ beam is small

٠

Prospects to reduce pileup

① Increase *N*_{bundle} (currently limited by available space for readout)

② Use staggered readout

③ Make PDF of the after pulse and use it in likelihood analysis

(characterization of the after pulse should be studied)

Standard readout

Staggered readout

RDC data in physics analysis

MEG II uses Maximum likelihood analysis to decide number of signals

 $\mathcal{L}(N_{\rm sig}, N_{\rm RMD}, N_{\rm BG})$

• RDC makes PDF of 3 observables (t_{ds} , E_{ds} , t_{us}) and implement in likelihood function

Figure 27: Projection of RDC PDF. The red and black line shows the accidental background and the signal PDF, respectively.