

# Development in DAQ and Triggering

#### Jinlong Zhang Argonne National Laboratory

TIPP'17, May 22-26, 2017, Beijing



#### Disclaimer

- This may not be the presentation you originally expected, not even the conference originally planned
- The theme is LHC experiment abundant
- Some statements are my personal bias
- I was not able to cite the references properly for the materials included

My apology



#### Introduction

- Trigger/DAQ system overview
- Developing in trigger
  - Triggerless scheme
  - Specific aspects (track, global, timing)
- Developing in DAQ
  - Accessing commodity (PCIe)
  - Storage evolution
- Trends
  - Accelerator (GPU, CPU+FPGA)
  - Common platform



#### **Collider Experiment Examples**









4

Ш



#### **Cosmologic Instrument Examples**



### **Over-simplified Requirements**

- Customized ASICs to handle the detector signals (FE electronics) in the upstream of the Trigger/DAQ
- Powerful hardware (FPGA based, GPU, CPUs and/or combinations) and software algorithms to perform data reduction (trigger)
- High speed links, huge computing capacity and storage space to handle the event data (DAQ)
- Enabled by
  - Moore's Law (CPUs, also FPGAs and GPUs)
  - Link technology (transceivers, networking)
  - Storage technology

#### Link to Upstream

#### http://www.xilinx.com

|                       | Туре        | Max<br>Performance <sup>1</sup> | Max<br>Transceivers   | Peak<br>Bandwidth <sup>2</sup> |
|-----------------------|-------------|---------------------------------|-----------------------|--------------------------------|
| Virtex<br>UltraScale+ | GTY         | 32.75                           | 128                   | 8,384 Gb/s                     |
| Kintex<br>UltraScale+ | GTH/GTY     | 16.3/32.75                      | 44/32                 | 3,268 Gb/s                     |
| Virtex<br>UltraScale  | GTH/GTY     | 16.3/30.5                       | 60/60                 | 5,616 Gb/s                     |
| Kintex<br>UltraScale  | GTH/GTY     | 16.3/16.3                       | 64                    | 2,086 Gb/s                     |
| Virtex-7              | GTX/GTH/GTZ | 12.5/13.1/28.05                 | 56/96/16 <sup>3</sup> | 2,784 Gb/s                     |
| Kintex-7              | GTX         | 12.5                            | 32                    | 800 Gb/s                       |
| Artix-7               | GTP         | 6.6                             | 16                    | 211 Gb/s                       |
| Zynq<br>UltraScale+   | GTR/GTH/GTY | 6.0/16.3/32.75                  | 4/44/28               | 3,268 Gb/s                     |
| Zynq-7000             | GTX         | 12.5                            | 16                    | 400 Gb/s                       |

- Readout system will utilize these serDes speeds or faster, so
- High speed radiation hard link need be developed
  - IpGBT modest

#### Link in Downstream



- Network for hundreds of 100 GBE links not a problem soon
- PCIe Gen4 expected in later 2017

## **Changing Paradigms**

- No trigger (triggerless) or less trigger levels
- Online Offline fusion
- Better physics performance or enhancing physics capability
- Less/common effort



#### **Go Triggerless**



05/25/2017

#### **Triggerless Not Yet Possible**

#### ITK Calo Muon Trigger Track Trigger Calorimeter Trigger Muon Trigger output rate / latency Tracker Stubs ECAL EB HCAL HGCAL HCAL HF CSC L0 Calo L0 Muon HB on-det Felix Felix Felix single xtal **Global Event** LTI LTI LTI HGCAL MPC Level-0 L0 off-det fan-out L0 CTP 1 MHz / 10 µs Splitters DAQ / Event Filter Felix Regional Calo Trigger Layer Muon Track-Finder Tracker Track-Finding Global Calo Trigger Layer Sorting/Merging Layer Data Handlers Data to DAQ/Event Filter Event Data Input to Trigger Builder Trigger Signals: L0 Trigger Data to Readout Storage Handler **Global Correlations** (Matching, PT, Isolation, vertexing, etc.) Event Event Filter Aggregator Processor Regional Full Event Farm Tracking Tracking Output **Global Trigger** (EFTrack) (FTK++) 10 KHz

CMS in Run 4

**Track trigger** 

**ATLAS** in Run4

- ATLAS seeded, regional @ 1 MHz and full event @ 100 kHz
- CMS self seeded, @ 40 MHz and latency of ~4  $\mu$ s
- **Global Event Processing with more/finer input** 
  - Possible to use precise timing

Permanent Storage

GEM +

IRPC

DT

RPC

LB

fan-out

### Track Trigger



### **AM Approach**





- ATLAS FTK (Phase-I upgrade) with
  - <1 billion of patterns</p>
  - AMChip06 (~128K pattern)
  - <100 μs
- ATLAS hardware trigger in Phase-II upgrade
  - ~10 billion of patterns
  - ~512k patterns per chip

#### **FPGA Approach**

- The reference option for CMS Phase-II Upgrade
  - Hough Transform and Kalman Filter in FPGA



#### **Global Event Processing**



- Data transfers are time multiplexed within the system
  - Increases flexibility
  - Simplifies evolution
  - Maximizes physics

#### **Precise Timing**





#### **ATLAS HGTD**



- Using precise timing information in trigger for pileup rejection
- Challenging to achieve the time resolution as a sizeable detector
- Huge data throughput (pixel detector after all)

## DAQ in General

- PC-based data aggregation
  - Ethernet or InfiniBand
  - PCle
- Network bandwidth becoming very affordable
  - Revisiting the philosophy of "move minimal amount of data"
  - Capability for high event building rate (even decouple from event filtering or other data processing)
- Heterogeneous computing resource (ASIC/FPGAs, GPGPUs, ... )
- Tight integration with offline
  - From the blur boundary to the full fusion
  - Better utilization of (online) resources

### I/O Card Utilizing PCIe



## **Storage Evolution**

- Throughput is the real challenge
- Real world example exists with current
  Technology for a system with capacity of
  ~50PB and throughput of ~5 TB/s
- We should look at storage technologies
  10 years from now
- Evolution of existing technologies
  - Consumer NAND drive getting
    - cheaper than spinning drive
  - Lustre and GPFS
- New technologies
  - 3D XPoint
- Innovations in the storage stack









GPU



Event Rate (GPU) / Event Rate (CPU) 1.4 1.3 1.2 1.1 0.9 ATLAS Simulation Preliminary 0.8 1 GPU 0.7 ID & Calo: 1 GPU 2 GPU Calo: 🔺 1 GPU 🛛 🛆 2 GPU 0.6 0 10 20 30 60 50 No. Athena Processes

ALICE TPC track reconstruction got a factor 2-3 speedup and saved 0.5M USD during Run 1 ATLAS HLT 20-40% higher throughput so not yet compelling

- Performance highly dependent on workload
- Could also integrate with other components (NIC) for serious data processing
- Comparison need consider hardware, power, cooling, and effort,... ...

#### **CPU + FPGA**





- Acceleration of factor up to 35 with Intel<sup>®</sup> Xeon<sup>®</sup>-FPGA with respect to single Intel<sup>®</sup> Xeon<sup>®</sup> thread
- Theoretical limit of photon pipeline: a factor 64 for Stratix V FPGA, for Arria 10 FPGA a factor ~ 300
- Bottleneck: Data transfer bandwidth to FPGA

#### **Common Platform**

- Sharing a hardware unit with powerful FPGA(s) and high speed links
  - ATCA/xTCA, PCIe, etc
- Leaving the intelligence differences for firmware and software





#### State of the Art: ATLAS gFEX

- 30 layer PCB
- 3 Virtex Ultrascale+
- 1 Zynq Ultrascale+
- 35 minPODs

## Trigger(ed by) Others

#### Search program for bright gravitational wave sources



DES-GW program using DECam at Chile to perform optical followup of gravitational wave signals from LIGO/Virgo



### **Recommendations** From CPAD

- Encourage the development of high-bandwidth radiation hard optical links (>10Gb/s)
- Encourage the development of scalable DAQ system to enable the transition from custom hardware to commodity networking and computing as early as possible
- Encourage the development in hybrid CPU-FPGA, GPGPU, storage, high speed optical and electrical communication
- Encourage studies of the impact of timing information in the trigger at ATLAS/CMS
- Encourage focus on emerging technologies such as photonics and wireless communication