Thermal-Bonding Method for Micromegas Fabrication and Its Applications

Zhiyong Zhang^{1,2}, Jianxin Feng³, <u>Jianbei Liu^{1,2}</u>

State Key Laboratory of Particle Detection and Electronics, China
University of Science and Technology of China
Central China Normal University

TIPP2017 Beijing, China May 24, 2017

Micromegas

A very popular and mature MPGD

Very small avalanche gap without insulator: fast charge collection, fast signal, no charge-up, high rate, small diffusion, good spatial and time resolution ...

Thermal-Bonding Method

Stretched mesh Readout PCB Spacers → bonding film Thermal roller

- Good energy resolution
- No etching, no pollution
- Easy to handle at lab
- Easy to make new structures
- Cheap
- But uniformity to be improved

Materials and Specifics

Thermo-bond films with a dry (hot-melt type) adhesive on both sides. A variety of specifications to choose.

Wire Diameter: 16um, Thickness: 25um LPI: 400, Opening rate: 55% Tension: 30N/cm

Resistive anode:

- Carbon paste printing: $k\Omega/\Box$ 100M Ω/\Box
- High purity Germanium coating: MΩ/□ 100MΩ/□

Thermal-Bonding Process

Spacer setting could be very labor consuming. We have developed a technique using water-soluble film to do the job more efficiently: pattern water-soluble film \rightarrow attach the film to PCB \rightarrow set spacers in the pattern \rightarrow thermal bonding \rightarrow water bath to remove the water-soluble film.

Performance

A 20×20 cm² Micromegas

- ➔ Energy resolution for 5.9keV x-rays: 14.8% (FWHM)
- → Active area: 20×20 cm², but could easily go up to 20×60 cm²
- \rightarrow High gain above 10^4
- \rightarrow High rate capability: up to 10^6 Hz/cm²

Uniformity

Application (1)

• Double-avalanche structure

- Double meshes cancel out tension on PCB by mesh
- Good for time resolution and efficiency
- A good two-dimension tracker

Double-avalanche MicroMegas

Active area: 10cm*10cm Strip pitch: 412um

No.	Mm_Ge_01	Mm_Ge_02	Mm_Cp_03	Mm_Ge_04
Resistive anode	Ge 100nm/ 200nm	Ge 800/1000nm	Carbon paste ~20um	Ge 300/500 nm
Surface resistivity		$10 M\Omega / \Box$, $5 M\Omega / \Box$	0.9MΩ/□ , 0.8MΩ/□	165MΩ/□, 35MΩ/□
Mesh (Stainless steel)	350IPL, dia23 um 48um	400IPL, dia19 um 29um	400IPL, dia19 um 29um	325IPL, dia23 um 31um
Tension	20-23 N/cm	22-24 N/cm	22-24 N/cm	22-24 N/cm

Spacer: Φ 1.5mm with 10mm pitch (for the bulk technique, Φ 0.2-0.4mm with 2mm pitch)

Gas Gain and Rate Capability

Gas gain of the 8 avalanche structure of the four double-avalanche detectors

Rate capability tested with collimated X-rays

Cosmic-ray Telescope

A cosmic-ray telescope was set up by the four double-avalanche Micromegas detectors

Application (2)

• A piggyback structure

- Stacked two meshes
- Gap between the stacked meshes: 200-300um, serving as pre-amplification
- Gap between the bottom mesh and anode: 50-100um for main amplification
- This structure allows to achieve very high gain, and yet significantly reduce ion back-flow.

Piggyback Micromegas

- 2.5x2.5 cm² active area;
- Gap between two meshes: ~240um
- Mesh to anode: ~120um
- Ge-coated anode

Anode signal without amplifier, 50Ω impedance

Mesh02 signal after a charge sensitive pre-amplifier

Application (3)

• Micromegas with four-corner readout to reduce number of readout channels while maintaining reasonable spatial resolution.

Spatial resolution measured with X-rays: 235um

Summary

- Presented a new method for fabricating Micromegas detectors – thermal bonding method
 - No etching, simple and flexible, lab-friendly, cheap
 - No fundamental issue with going to large size spacer setting is the key
 - Uniformity needs to be improved
- Potential for various applications

MPGD lab @ USTC

- Central gas supply
- A class-10000 clean room
- A general-purpose work station and a large-area regular work bench
- Three detector testing areas

