

A compact size,

64-channel, 80..125 MSPS, 14-bit dynamic range ADC module for the PANDA Electromagnetic Calorimeter

P. Marciniewski, Tord Johansson, Uppsala University, Sweden, M. F. Preston, K. Makonyi, Per-Erik Tegner, Stockholm University, Sweden P. Schakel, M. Kavatsyuk, KVI Groningen, The Netherlands J. Müllers, University Bonn, Germany M. Albrecht, Ruhr University Bochum, Germany

ADC for EMC - PANDA EMC Readout System

- 15000 channels
- **Dual photosensor readout**
- **Dual range** ٠

High channel density

UNIVERSITET

ADC for EMC-Endcap - Encapsulation and Cooling

Pawel Marciniewski, TIPP-Conference, Beijing 25.05.17

ADC for EMC - SADC development for PANDA

ADC Model	ADC_32DR	ADC_64K	
No. of channels	32 (64)	64	
Sampling rate	80-125 MSPS		
nput coupling	DC, positive, negative, diff		
Resolution (ampl)	14-bit dual range	14-bit	
nput Connector	uFL	Samtec	
Baseline	0V		
nput range (dual)	±1.0V, ±60 mV	±2,2V, ±140 mV	
Noise	100uV		
Data retention/ch.	25us		
nput filter	Active-filter/Amplifier	Active filter/Amplifier	
nterface	Optical, SFP, LC-type, 2 Gbit/s		
eature extraction:	P0 Pi Pz Pi PPi PPz PPa Pi	trigger time time=0 PPq $\left(\begin{array}{c} Pe \\ Pq \end{array}\right)$	

ADC for EMC-Endcap - Design idea

ADC deserializer Align & Phase Calibration Config **Circular Buffer** Baseline, **Block RAM** CFD, MAX, (12.8µs) Integral **Packet Builder** UDP/IP TX UDP/IP RX Arbiter Arbiter I²C Ethernet

Written for Crystal Barrel @ ELSA (Bonn) by Johannes Müllers

Partly based on firmware written by Pawel Marciniewski

- ADC-interface,
- PLL control,
- Noise filter,
 - Baseline,
- Pulse amplitude,
- Pulse integral
- CFD discrimination
 - Triggering
- 1G/2.5G Ethernet PCS/PMA (free, Xilinx IP)
- Tri Mode Ethernet MAC (commercial, Xilinx IP)
- 1G eth UDP/IP stack (free, OpenCores)

Performed at Ruhr Universität Bochum Malte Albrecht (Tests proposed by Pawel Marciniewski)

- "Bonn" firmware
- CAEN DT5800 programmable pulse generator
- Ethernet switch

- Noise
- Pulse response/bandwidth
- Linearity (Amplitude and Integral)
- Resolution
- Pile-up resolution (pending)

Taking the energy conversion coefficient and the overall gain of the system into account, the noise of 170 uV corresponds to 1 MeV, which fulfills the basic requirement of the experiment.

Integral resolution σ / Mean

10

 10^{-2}

10-3

0

ADC for EMC-Endcap - ADC performance tests

Relative resolution (amplitude) HIGH Gain

10%

1%

900 MeV

UNIVERSITET

ADC for EMC-Endcap - PbWO₄/VPTT tests at Max Lab

ADC for EMC-Endcap - PbWO₄/VPTT tests at Max Lab

Relative Energy Resolution

Pawel Marciniewski, TIPP-Conference, Beijing 25.05.17

- Digital Low-Pass filters

Moving Average (MA)

Exponentially Weighted Moving Average (EWMA)

- Digital Low-Pass filters

Moving Average (MA)

Exponentially Weighted Moving Average (EWMA)

- Digital Low-Pass filters

UPPSALA

UNIVERSITET

ADC for EMC-Endcap - Digital Low-Pass filters

Pawel Marciniewski, TIPP-Conference, Beijing 25.05.17

UPPSALA

UNIVERSITET

- Assessing the dynamic range for ADC

Pawel Marciniewski, TIPP-Conference, Beijing 25.05.17

UPPSALA

UNIVERSITET

ADC for EMC-Endcap - Signal tail reconstruction

ADC for EMC-Endcap - Signal tail reconstruction

Signal tail reconstruction

ADC for EMC-Endcap

- Pile-up recognition

ADC for EMC-Endcap

- Pile-up recognition

- The board was irradiated in June 2016 at the The Svedberg Laboratory (TSL) in Uppsala. Firmware prepared at KVI.
- Board placed in the Standard User Position (SUP), beam perpendicular to the board. One FPGA read out.
- Neutron flux between $5 \cdot 10^5$ and $1 \cdot 10^6$ s⁻¹ cm⁻² (>10 MeV).

ADC for EMC - Neutron irradiation of the ADC_64K_2

MTBF calculation (calculations performed by Markus Preston, Stockholm University)

 $\sigma_{SEU} = 7.58 \cdot 10^{-15} (\pm 7\%) \text{ cm}^2 \text{ bit}^{-1}$ $pp_{bar} = 15 \text{ GeV/c}$ $L = 2.10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

Scaled Neutron Flux: Φ_n = 150 cm⁻² s⁻¹ (at position of digitisers)

Per digitizer board:

$r_{SEU} = 1.0 \cdot 10^{-4} \text{s}^{-1}$	→ MTBF = 2.7 h automatically correctable
$r_{SEU} = 3.5 \cdot 10^{-6} \text{s}^{-1}$	\rightarrow MTBF = 90 h needing reconfiguration (<200 ms)

Entire system (600 digitizers)

r _{seu} = 0, 056 s⁻¹	
r _{seu} = 0, 002 s ⁻¹	

- MTBF = 17,8 s automatically correctable
- \rightarrow MTBF = **529 s** needing reconfiguration (<200 ms)

Proton irradiation scheduled for November 2016

Hardware design

Software/analysis

Firmware/software

Firmware/software

Software -/analysis

Uppsala - Pawel Marciniewski

- Markus Preston, Karoly Makonyi

KVI Groningen - Peter Schakel, Myroslav Kavatsyuk

Uni Bonn - Johannes Muellers

Uni Bochum - Malte Albrecht

Pawel Marciniewski, TIPP-Conference, Beijing 25.05.17

Thank You !