

Bundesministerium für Bildung und Forschung

Readout and precision calibration of square meter sized micromegas detectors using the Munich cosmic ray facility

A. Zibell

Julius-Maximilians-Universität Würzburg

TIPP 2017 – Beijing - 24.5.2017

Micromegas principles

Centroid method

$$x_{\rm cen} = rac{\sum\limits_{
m strips} x_{
m strip} \cdot q_{
m strip}}{\sum\limits_{
m strips} q_{
m strip}}$$

 μ TPC method: angle reconstruction

$$\Rightarrow \Theta = \arctan(\frac{1}{slope_{fit}} \times \frac{pitch}{v_{drift}})$$
$$slope_{fit} = \frac{t_{drift}}{\Delta strip}$$

Julius-Maximilians-

Large micromegas

- Small micromegas detectors up to 50 cm x 50 cm size are well understood and proven to work with high precision.
- Going to larger detectors requires precise assembly of multiple printed circuit boards in order to maintain the precision
- \Rightarrow A calibration method is needed

ulius-Maximilians-

Munich cosmic ray facility

Two Monitored Drift Tube chambers (MDT)
 => two reference tracks

in 10 cm wide segments

- Two trigger scintillator Hodoscopes
 ⇒ second coordinate
 ⇒ segmentation of detector under test
- 34 cm iron absorber $\Rightarrow E_{\mu} > 600 \text{ MeV}$
- Active area of 9 m², $\Theta \in [-30^{\circ}, 30^{\circ}]$

 \Rightarrow Investigation of the whole active area of 2-3 m² micromegas

24.5.2017

1m² L1 micromegas detector

- Resistive strip technology
- Active area: 0.92 x 1.02 m²
- Two readout boards with 2048 strips total
- Pitch: 0.45 mm

UNIVERSITÄT

WÜRZBURG

- Ar:CO₂ 93:7 @ atm. Pressure
- 16 APV25 frontend boards 57.6 mm wide (y - coordinate)
- 10 scintillator segments 100 mm wide (x - coordinate)
- => Subdivision of detector in 16 APV * 10 scintillator = 160 partitions

 \Rightarrow Calibration and alignment for each of the 160 partitions

Calibration using reference tracks

- Measurement of y-position (perpendicular tracks) residual via centroid method res = y_{measured} - y_{predicted} Δy = res
- Measurement of z-position (inclined tracks)
 Δz = res / tanα res = m_y * Δz
- Fit with straight line $\Rightarrow \Delta z = slope$

UNIVERSITÄT

WÜRZBURG

 $\Delta z = \text{slope}$ $\Delta y = \text{intercept}$

Chamber deformation in z

- Inclined muon tracks:

Julius-Maximilians-

- Drift gap deformation due to slight overpressure (10 mbar)
- Maximum deviation from plane measured ~0.8 mm
 - \Rightarrow 1.6 mm cathode deformation due to stiff base plate
- Resolution better 0.1 mm
- Finite elements simulation (ANSYS)

0.17 0.33 0.50 0.67 0.84 1.00 1.17 1.34 1.51 deformation [mm]

Readout board alignment

- L1 micromegas chamber:

Julius-Maximilians-

- 2 readout boards with resistive and readout strips
- No dedicated alignment tooling used during the construction
- Variation of gap size in between boards
- Using perpendicular tracks:
 - Shift: 100 μm
 - Rotation: 350 µm/m
 - Determination of strip position within 15 μ m

Spatial resolution

- Determination of spatial resolution:

UNIVERSITÄT

WÜRZBURG

- Residual with centroid method
- Fitted with double Gaussian function
- Sigmas weighted by integral
- Spatial resolution limited by:
 - Multiple scattering of cosmic muons
 - Extrapolation of MDT tracks

24.5.2017

UNIVERSITÄT WÜRZBURG Cosmic muon scattering

Two track segments with different slope
 ⇒ reconstruct the deflection point in space

Muon tomography in the y-z-plane

- Reconstruction of track deflection point in the y-z-plane
- Track slope difference > 0,03 selected

 \Rightarrow 2D image of the detectors and support structure

UNIVERSITÄT

WÜRZBURG

Muon tomography in the x-y-plane

- Coarse segmentation of the scintillator hodoscope along the x-axis
 ⇒ reconstruction of the scattering in the x-y-plane
- Only a slice in z is considered

Julius-Maximilians-

Influence on spatial resolution

- Scattering point known

Julius-Maximilians-

- \Rightarrow select just the track segments through the detector under test
- Better residual width distribution without loss of statistics

Readout synchronization

- MDT readout:

UNIVERSITÄT

WÜRZBURG

- similar fashion as in the ATLAS detector
- Clock and trigger distribution via optical TTC fiber
- Micromegas readout:
 - RD51 Scalable Readout System (SRS) with APV25 hybrids
 - Multiple FEC cards for larger detectors (>2048 channels)
 - \Rightarrow Including the optional Scalable Readout Unit (SRU) for synchronization

24.5.2017

Scalable Readout Unit (SRU)

Event building and Interface to CRF infrastructure:

- Detector synchronization and data collection(DTCC, A. Martinez)
- Event building, data formatting and ROD Firmware (A. Zibell) (correlation MDT ⇔ Micromegas)
- Data transmission to PC (ROS) via SLINK (M. della Volpe et al.)
- Slow control, data preview
 via Ethernet:
 configuration data: Register settings on
 Frontend chip, SRS, SRU, ...
- Reception and distribution of triggers, synchronization (TTC)

- Calibration of the whole active area of large micromegas detectors in a cosmic ray facility with accuracy better than 30 μm
- Measurements include:
 - Homogeneity of efficiency and charge distribution
 - Determination of z position with 100 µm resolution
 - Calibration of readout strip position every 10 cm with an accuracy of 15 μ m
- L1 micromegas (1 m²)
 - Shift and rotation between readout boards calibrated
 - 1.6 mm deformation of the drift gap due to 10 mbar overpressure
 - Spatial resolution limited by multiple scattering, also in the MDTs
- Muon tomography with the system is possible with enough statistics
- Micromegas readout using APV25 chips and SRS electronics
- Synchronization in between multiple micromegas FEC cards and MDTs using a SRS SRU unit with custom firmware

128 preamplifier channels - Analogue pipeline buffer - Selected columns output

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Backup

24.5.2017