CMOS pixel development for the ATLAS experiment at HL-LHC

Branislav Ristić on behalf of the ATLAS CMOS Pixel Collaboration

> TIPP 2017 2017/05/25

Outline

- The ATLAS Phase II Inner Tracker Upgrade
- CMOS Pixel Sensors
 - Concepts and Prototypes
- Results from Capacitively Coupled Devices
- Monolithic Modules
 - Current Monolithic Developments
- Summary

CMOS pixel development for the ATLAS experiment at HL-LHC 2017/05/25 | Branislav Ristić (CERN/Lancaster)

ATLAS Phase II Inner Tracker Upgrade

- LHC Phase II Upgrade in 2025:
 - 10 x increase of luminosity
 - Harsh radiation environment
 - \rightarrow Up to 10¹⁶ neq/cm², 1Grad for inner layers
 - ~MHz/mm² hit occupancy
- \rightarrow All silicon Inner Tracker covering \sim 200m²
 - ! Cost effectiveness
 - ! Power consumption
 - ! Speed

CERN

CMOS Pixel Sensors

Iniversity

- Industry standard processes
 - Commercially available by variety of foundries in large volumes.
 - Low cost per area, wafer thinning guite standard
- Cheap hybridisation: Gluing instead of bump bonding
 - ...or none at all \rightarrow Monolithic sensors

The ATLAS CMOS Pixel Collaboration

UNIVERSITÉ

DE GENÈVE

FACULTÉ DES SCIENCES

BERGISCHE UNIVERSITÄT WUPPERTAL UNIVERSITÄT Bern

b

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Lancaster 🍱

University

CERN

CMOS pixel development for the ATLAS experiment at HL-LHC

Depleted CMOS Pixel Sensors

- Basic principle: High Voltage biased diode and LV electronics on top
 - Deep buried well: Collecting diode and/or shield for LV electronics
- Process parameters

Lancaster 🌌

University

CERN

- Substrate resistivity: $O(100)\Omega cm$ (HVCMOS) to k Ωcm (HRCMOS)
- Additional shielding wells, epi layer, backside processing
- Large fill factor electrode
 - Uniform field, short drift distances
 - Large sensor capacitance
 → Noise, timing, power

- Small fill factor electrode
 - Small sensor capacitance
 → low power and high speed
 - Potentially less radiation hard due to long drift distances

 $d \propto \sqrt{\rho}$

CMOS pixel development for the ATLAS experiment at HL-LHC

Concepts and Prototypes

CMOS pixel development for the ATLAS experiment at HL-LHC

2017/05/25 | Branislav Ristić (CERN/Lancaster)

Lancaster 🌌

Universitv

CÊRN

AMS H18 CCPDs

Lancaster 🌌

University

CERN

- 180nm HV-CMOS process on ~10-100Ωcm p-type substrate
- Irradiated up to 2x10¹⁶ n_{eq}/cm² and 1Grad TID
- Efficiency of >99% measured after 1x10¹⁵ n_{ed}/cm²

→ More today by Mateus Vicente

CMOS pixel development for the ATLAS experiment at HL-LHC

LFoundry 150nm CCPDs

- 150 nm process on high resistive substrate
 - Full CMOS possible
 - Implant customizations possible
 - Backside processing
- CCPD_LF (FE-I4 type)
 - Pixel size: 33um x 125 μm²
 - Chip size: 5 mm x 5 mm (24 x 114 pix)
 - Different amplifier designs/transistor layouts
 - Irradiated up to 50 Mrad and $10^{15} n_{eq}/cm^{2}$
- LF-CPIX (Demonstrator chip, FE-I4 type)
 - Improved discriminator and guard ring design
 - Pixel size: 250 x 50 μm²

Lancaster 🌌

Universit

CERN

- Chip Size: 10 x 9.5 mm² (34 x 168 pix)
- Thinned to 100 and 200 μ m with backside electrode

<-10

LFoundry 150nm CCPDs | Results

Neutron irradiation up to 5x10¹⁵ n_{ea}/cm²

CMOS pixel development for the ATLAS experiment at HL-LHC

2017/05/25 | Branislav Ristić (CERN/Lancaster)

Lancaster 🌌

University

CÊRN

The TowerJazz 180nm Investigator

- Originally R&D for the ALPIDE chip for the ALICE Upgrade
- Epitaxial layer on high resistive substrate
- Separate, small collecting diode
 - → Small capacitance

Lancaster 🍱

University

CERN

- \rightarrow Higher gain and speed, potentially low power
- Charge collection difficult far from n-well, especially after irradiation
 - \rightarrow Process modification adding planar n-type layer
- Investigator prototype implements various electrode parameters (spacing, size)

CMOS pixel development for the ATLAS experiment at $\ensuremath{\mathsf{HL-LHC}}$

The TowerJazz 180nm Investigator

1x10¹⁵ n_{eq}/cm²

Unirradiated

Lancaster 🧱 University

CÊRN

CMOS pixel development for the ATLAS experiment at HL-LHC

Depleted Monolithic Sensors for ITk

- Advantages
 - No hybridization (Cost effective, simple assembly)
 - Low material budget (chips thinned down to depletion thickness)
 - As radiation hard as hybrid modules
- Challenges

Lancaster 🍱

CERN

- Power consumption (input capacitance, digital logic)
- Isolation from digital crosstalk and noise
- Pixel size (depending on readout scheme)
- First results with monolithic parts of the AMS H35DEMO and lots of experience from Mu3e Collaboration

\rightarrow Extensive development effort in ATLAS

CMOS pixel development for the ATLAS experiment at HL-LHC 2017/05/25 | Branislav Ristić (CERN/Lancaster)

Monolithic Readout Concepts

- Small inactive periphery
- Buffer in Matrix
- Digital activity in matrix

- Smaller pixel size possible
- No clock to the matrix
- 1 1 routing

- Less digital crosstalk
- Complex routing of analogue signals
 - Signal integrity
- Large inactive periphery

Column drain architecture

Lancaster 🍱

CERN

- Token traverses column, triggering R/O
- Hit buffering (ToT or LE/TE timestamps)
- Synchronous readout of buffers

Asynchronous hit to periphery

- Comparator output (directly) to periphery
- Buffering and time-stamp at periphery
- 1 1 connection or pixel bus and delay

CMOS pixel development for the ATLAS experiment at HL-LHC 2017/05/25 | Branislav Ristić (CERN/Lancaster)

AMS aH18 ATLASPIX

- Joint submission with the Mupix8 Chip
- Pixel sizes 40µm x 130µm and 50µm x 60µm
- Amplifier and Discriminator in pixel cells
- Triggered matrix
 - 16 pixels connected to four readout buffer cells
 - 8-bit wide Parallel Pixel To Buffer (PPTB) bus
 - FE-I4 like latency based readout
 - Fast, but can be ambiguous
- Triggerless matrix
 - Each front end connected directly to a corresponding digital cell in the periphery
 - Continuous polling for new hits
 - Simple and small front end to periphery bus

LFoundry Monopix

- $\sim 10 \times 10 \text{ mm}^2$ with 50 x 250 μ m² pixels
- Each pixel: hit address and 8bit leading edge + trailing edge timestamp
- Column Drain Readout: Two approaches
- Readout in pixel

Lancaster 🌌

Iniversit

CERN

- Simple bus, complex pixel
- Only CSA and comparator in pixel
 - Simpler pixel, 1-1 routing to periphery
- Nine pixel flavors implemented
- Pre-radiation sensor breakdown of above 250V

(full digital readout) PADe + Sorializor +1VDS dri Am241@200V Unirradiated e55@200V logic Pixel with R/O Binary logic pixel 129 X 8 129 X 28 (2 (7 designs) designs) Chin Bias Configuration 20 25 10mm

Single pixel spectra

Further LF prototypes: COOL, LF2, ALPHA (ATLASPIX like)

700

600

500

400

300

200

100

CMOS pixel development for the ATLAS experiment at HL-LHC 2017/05/25 | Branislav Ristić (CERN/Lancaster)

10

ToT

T. Wang et al 2017 [INST 12 C01039

TowerJazz 180nm MALTA

- Active area 18 x 18 mm² with 36.4 x 36.4 μ m² pixels, separate collecting diode
- Novel concept for triggerless readout
- All hits are asynchronously transmitted over high-speed bus to EOC logic
 - Each pixel: CSA + Discriminator + Flip-flop
 - Matrix divided in double columns and pixel groups
 - Hit info (pixel group + hit pattern) sent via DC bus to periphery
- 40bit chip bus to LVDS/CMOS output
 - Daisy chains of chips possible
- No clock distribution over active matrix (power and cross-talk)
- External BCID clock for synchronisation and charge measurement
 - Analog measurement through time difference to leading edge
- Bias current 200nA to 500nA can be used to adjust TW range

EoC Chip bus – asynchonous hit address transmission

• Same periphery, but Column Drain Readout and ToT in pixel cell \rightarrow TJ Monopix

CMOS pixel development for the ATLAS experiment at HL-LHC 2017/05/25 | Branislav Ristić (CERN/Lancaster)

Summary

Lancaster 🌌

- Huge momentum for a monolithic solution for ATLAS ITk
- Extensive characterization of CCPD prototypes
 - Irradiation up to 1Grad and $10^{16} n_{eq}/cm^2$
 - Efficiency in testbeam experiments: >99%
 - Constant improvements to hit timing
- Suitable candidate for outer pixel layers
 - Material budget, power consumption, production/assembly costs
 - Several prototypes in AMS, Lfoundry, TowerJazz technology in design and/or production
 - Several/novel read out and pixel schemes
 - Characterization till end of the year
- Common design early next year

Backup

Substrates after irradiation

Igor Mandić, Jožef Stefan Institute, Ljubljana Slovenia 11th "Trento" Workshop, February, Paris, 2016

CMOS pixel development for the ATLAS experiment at HL-LHC

2017/05/25 | Branislav Ristić (CERN/Lancaster)

Lancaster 🌌

University

CÉRN

LF-CPIX Threshold Behaviour

 Sensor remains well tunable with similar noise behaviour after 50Mrad

CMOS pixel development for the ATLAS experiment at HL-LHC

TowerJazz Investigator Readout

CMOS pixel development for the ATLAS experiment at HL-LHC

2017/05/25 | Branislav Ristić (CERN/Lancaster)

Lancaster 🧱 University

CÉRN