

The SHiP experiment at CERN

A.Murat GÜLER METU Ankara On behalf of the SHiP Collaboration

Physics Motivation

- Standard Model provided consistent description of Nature's constituents and their interactions.
 - No significant deviation from SM.
- ➢ But the Standard Model can not explain
 - Neutrino masses and oscillations
 - Dark matter
 - Baryon asymmetry

Physics Motivation

- ➢ If the *hidden* particles have very feeble interaction with standard model particles. The only way to observe these interactions is to go high intensity.
- The SHiP is proposed to explore the domain of hidden particles in intensity frontier.

5/25/17

Physics Goals

Hidden particles are coupled to the Standard Model sector via renormalizable "portals".

➢ HP production and decay rates are strongly suppressed relative to SM

- Production branching ratios O(10⁻¹⁰)
- Long-lived objects
- Large number of models investigated.
- ➤ Tau Neutrino Physics.

Physics Goals

≻Production through hadron decays (π , K, D, B, proton bremsstrahlung, ...)

Models tested	Final states
Neutrino portal, SUSY neutralino	lπ, lK, lρ (l=e,μ,ν) (ρ+→π+π ⁰)
Vector, scalar, axion portals, SUSY sgoldstino	e⁺e⁻, μ⁺μ⁻
Vector, scalar, axion portals, SUSY sgoldstino	π⁺π⁻, K⁺K⁻
Neutrino portal, SUSY neutralino, axino	+ - v
Axion portal, SUSY sgoldstino	γγ
SUSY sgoldstino	$\pi^0 \pi^0$

➢ Full reconstruction and PID are essential to minimize model dependence

- Experimental challenge is background suppression
 - It requires O(0.01)

Neutrino Portal

The neutrino Minimal Standard Model (vMSM) aims to explain.

T. Asaka, M. Shaposhnikov PLB620 (2005), 17.

Matter anti-matter asymmetry in the Universe, neutrino masses and oscillations, non-baryonic dark matter.

≻Adds three right-handed, Majorana, Heavy Neutral Leptons (HNL), N1, N2 and N3.

baryon asymmetry of the Universe

m≈ O(100 MeV-GeV)

HNL Sensitivity

➢ Production in charm and beauty meson decays
 ➢ Decay into *hl* and *llv* ➢ vMSM parameter space almost totaly explored for m_N ≤ 2 GeV

 SHiP sensitivity covers large area of parameter space below the B mass & moving down towards the ultimate see-saw limit

The Scalar and Vector Portals

- Scalar Portal :Hidden scalar can mix with the SM Higgs. Mostly produced in penguin-type decays of B and K decays
- Decay into a pair of SM particles $S \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, KK, \eta\eta, \tau\tau, DD$
- Vector portal : dark photon (A') produced in QCD processes or in decays of $\pi^0 \rightarrow \gamma' \gamma, \eta \rightarrow \gamma' \gamma, \omega \rightarrow \gamma' \pi^0$ and $\eta' \rightarrow \gamma' \gamma$
- Decay into SM particles through a virtual photon: $\gamma' \rightarrow e^+e^-$, $\mu^+\mu^-$, $q\overline{q}$

Physics Program

A facility to search for hidden particles (SHiP) at the SPS: the physics case

85 theorists arXiv: 1504.0855

Contents

1 Introduction

2 Vector portal

- 2.1 Classification of vector portals
 - 2.1.1 Kinetic mixing
 - 2.1.2 Anomaly-free gauge groups $(B L, L_{\mu} L_{\tau} \text{ etc})$

3 Scalar portal

- 3.1 The scalar sector of the Standard Model and Beyond
 - 3.1.1 Scalar portal effective Lagrangian
 - 3.1.2 Hidden valleys
 - 3.1.3 Light scalars in supersymmetry
- 3.2 Linear scalar portals: Higgs-scalar mixing

4 Neutrino portal

- 4.1 Heavy neutral leptons
- 4.2 Active neutrino phenomenology
 - 4.2.1 Three-flavour neutrino oscillations. A theoretical overview
 - 4.2.2 Present experimental status of neutrino masses and mixings
 - 4.2.3 Short-Baseline neutrino anomalies
 - 4.2.4 Future neutrino experiments

5 ALPs (and other PNGBs) at SHiP

- 5.1 ALPs and why they are interesting
 - 5.1.1 ALP origins
 - 5.1.2 Connection to Dark Matter
- 5.2 Interactions, phenomenological features and existing limits
- 5.3 ALPs coupled to two gauge bosons

6 SUSY

- 6.1 Introduction
- 6.2 A Very Light Supersymmetric Neutralino and R-Parity Violation 6.2.1 Motivation for a very light neutralino
 - 6.2.2 R-parity Violation
 - 6.2.3 Finding Neutralinos at SHiP via R-Parity violation

7 Tau neutrino physics

- 7.1 Physics case
 - 7.1.1 Tau neutrino physics
 - 7.1.2 Deep inelastic muon and electron neutrino scatteri
 - 7.1.3 Electron neutrino cross section at high energy
 - 7.1.4 Tau neutrino magnetic moment

8 Searches of lepton flavour violating processes $\tau \rightarrow 3\mu$

- 8.1 Motivation as a null-test of the standard model
- 8.2 $\tau \rightarrow 3\mu$ in seesaw scenarios
- 8.3 Supersymmetric models

SHiP: a fixed-target facility at the SPS

- ➤The SHiP facility is located on the North Area, and shares the TT20 transfer line and slow extraction mode.
 - 400 GeV protons from SPS
 4x10¹⁹ pot/year (~200 days of running)
 - •Spill = $4x10^{13}$ pot per cycle of 7.2 s with slow beam extraction (1s)

Experimental Requirements

> Initial reduction of beam induced backgrounds

- Heavy target to maximize Heavy Flavour production (large A) and minimize production of neutrinos in $\pi/K \rightarrow \mu\nu$ decays (short λ_{int})
- Hadron absorber
- Effective muon shield (without shield: muon rate $\sim 10^{10}$ per spill of $4x10^{13}$ pot)
- Slow (and uniform) beam extraction ~1s to reduce occupancy in the detector

The SHiP Detector

Active Muon Shield

- Active muon shield based entirely on magnet sweeper with a total field integral $B_v = 86.4 \text{ Tm}$
- Realistic design of sweeper magnets in progress
- < 7k muons / spill (E_{μ} > 3 GeV), from 10¹⁰
- Negligible flux in terms of detector occupancy

HNL Detector

Background rejection:

• μ or ν interactions in decay volume: evacuated vacuum vessel: (10 μ bar)

• K/ Λ -decays produced in surrounding material in μ , v-interaction:

 Taggers: liquid scintillator in double walled vessel to veto candidates with accompanying particles.

– Veto: veto short lived K_S , Λ , or candidate with accompanying particles.

Spectrometer to reconstruct signal:

- Ecal and muon filter/chambers at the end.
- Tracking straw chambers and magnet for reconstruction.

Particle Identification

SHiP Neutrino Detector

A. Murat GÜLER@METU

5/25/17

The Neutrino Target

^{5/25/17}

SHiP Neutrino Program

- SHiP setup ideally suited to study neutrino and anti-neutrino physics for all three active flavours.
- ➤ High charmed hadrons production rates ⇒ high neutrino fluxes from their decays, including remnant pion and kaon decays.
 - Energy spectrum of different neutrino flavors at target

v_{τ} /anti- v_{τ} yield

> Number of v_{τ} and anti- v_{τ} produced in the beam dump.

$$N_{\nu_{\tau}+\bar{\nu}_{\tau}} = 4N_p \frac{\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_s} Br(D_s \to \tau) = 3.26 \times 10^{-5} N_p = 6.5 \times 10^{15}$$

Main background in v_{τ} and anti- v_{τ} searches is the charm production in $v_{\mu}CC$ (anti- $v_{\mu}CC$) and $v_{e}CC$ (anti- $v_{e}CC$) interactions, when the primary lepton is not identified.

F₄ and F₅ Structure Functions

> Through v_{τ} and anti- v_{τ} identification: unique capability of being sensitive to F4 and F5

• At LO $F_4 = 0$, $2xF_5 = F_2$

5/25/17

• At NLO $F_4 \sim 1\%$ at 10 GeV

r>1.6 evidence for non-zero values of F_4 and F_5

 $E(v_{\tau}) < 38 \text{ GeV}$

Charm Physics

Expected charm exceeds the statistics available in previous experiments by more than one order of magnitude

In NuTeV	~5100 v_{μ} ,	~ 1460 anti- v_{μ}
In CHORUS	$\sim 2000 v_{\mu}$,	32 anti-v _µ

	Expected events	
ν_{μ}	$6.8 \cdot 10^4$	
ν_e	$1.5 \cdot 10^{4}$	
$\bar{ u_{\mu}}$	$2.7 \cdot 10^{4}$	
$\bar{\nu_e}$	$5.4 \cdot 10^{3}$	
total	$1.1 \cdot 10^{5}$	

$$\frac{\mathbf{v}_{\mu}^{\text{CC}}}{f(charm)} = \frac{\int \Phi_{\nu_{\mu}} \sigma_{\nu_{\mu}}^{CC} \left(\frac{\sigma_{charm}}{\sigma_{\nu_{\mu}}^{CC}}\right) dE}{\int \Phi_{\nu_{\mu}} \sigma_{\nu_{\mu}}^{CC} dE} \approx 4\%$$

$$\frac{\mathbf{v_e}^{\text{CC}}}{f(charm)} = \frac{\int \Phi_{\nu_e} \sigma_{\nu_e}^{CC} \left(\frac{\sigma_{charm}}{\sigma_{\nu_e}^{CC}}\right) dE}{\int \Phi_{\nu_e} \sigma_{\nu_e}^{CC} dE} \approx 6\%$$

• No charm candidate from v_e and v_{τ} interactions ever reported!

Project Schedule

Accelerator Schedule	2015	2016	2017	2018	20	19	2020		2021	2022	2023	20	024	202	5	2026	2027
LHC		Ru	n 2				S2 Run 3			Run 3		LS3			R		Run 4
SPS											NA :	NA stop SPS stop					
	_										_						
Detector		R&I	D, design an	d prototypin	g				Product	ion		In	stallation				
Milestones	ТР			CDR	TI	OR	PRR									CwB	Data taking
Facility				Integration			_									CwB	
Civil engineering			Pre-construction				ction	Target – Detector hall – Beamline - Junction (WP1)									
Infrastructure										In	stallation]	Installatio	on	Inst		
Beam Line		R&D,	design and	CDR					Produ	iction		Iı	nstallatio	n			
Target complex		R&	D, design an	d CDR				Pro	duction		Inst	allation	ı				
Target		R	&D, design	and CDR +	CDR + prototyping						Production Installatio			r.			

- Form SHiP Collaboration December 2014
- Technical Proposal April 2015
- Positive SPSC recommendation for CDS September 2016
- Comprehensive Design Study 2018
- Construction and Installation 2021-2025
- Commissioning and data taking 2026

SHiP: Search for Hidden Particles

SHiP is a new proposed fixed-target experiment at the CERN SPS accelerator to search for hidden, very weakly interacting new particles. At the same time, also ideal for v_{τ} physics.

Collaboration

49 institutes from 16 Countries, plus CERN

5/25/17

Summary

- > SHiP is a fixed target experiment proposal at CERN SPS.
- ➢ SHiP is proposed to search for New Physics in the largely unexplored domain of new, very weakly interacting particles with mass O(10) GeV.
- SHiP will perform a complement searches for new searches at energy frontier at CERN.
- > SHiP is also unique detector for neutrino/charm physics.
- Positive recommendation from the SPSC in January 2016.
- Comprehensive Design Report expected for European HEP strategy 2019.

Costs

Item	Cost (MCHF)
Facility		135.8
Civil engineering	57.4	
Infrastructure and services	22.0	
Extraction and beamline	21.0	
Target and target complex	24.0	
Muon shield	11.4	
Detector		58.7
Tau neutrino detector	11.6	
Hidden Sector detector	46.8	
Computing and online system	0.2	
Grand total		194.5

Decay Volume

Vacuum Vessel

- 10 m x 5 m x 60 m
- Walls thickness: 8 mm (Al) / 30 mm(SS)
- Walls separation: 300 mm
- Liquid scintillator (LS) volume (~36m³) readout by WLS optical modules (WOM) and PMTs

Magnet designed with an emphasis on low power

• Power consumption < 1 MW

Estimated need for vacuum: $\sim 10^{-3}$ mbar

- Field integral: 0.65Tm over 5m
- Weight ~800 t
- Aperture $\sim 50 \text{ m}^2$

PID

Tracking

– TT, Straw tracker(polyethylene terephthalate tubes), Emulsion

- Particle ID
 - ECAL, HCAL, Muon spectrometer, Emulsion
- Reconstruction

– Decay vtx, IP, mass

- Momentum
 - ECC, CES with magnet, Muon spectrometer
- Charge
 - CES with magnet, Muon spectrometer
- Timing detector

- Plastic scintillator or MRPC (multigap RPC), TT

Calorimeters

ECAL

- Almost elliptical shape (5 m x 10 m)
- 2876 Shashlik modules
- 2x2 cells/modules, width=6 cm
- 11504 independent readout channels

HCAL

- Matched with ECAL acceptance
- 2 stations
- 5 m x 10 m
- 1512 modules
- 24x24 cm² dimensions
- Stratigraphy: N x (1.5 cm steel+0.5 cm scint)
- 1512 independent readout channels

Dimensions $60x60 \text{ mm}^2$ Radiation length 17 mm Moliere radius 36 mm Radiation thickness 25 X₀ Scintillator thickness 1.5 mm Lead thickness 0.8 mm Energy resolution 1%

Muon System

Based on scintillating bars, with WLS fibers and SiPM readout

Requirements:

- 1) High-efficiency identification of muons
- in the final state
- 2) Separation between muons and hadrons/ electrons
- 3) Complement timing detector to reject combinatorial muon background

Timing Detector

Challenges:

- Large area
- Required resolution < 100 ps
- Spatial resolution under study

Two options considered:

- Scintillator bars (NA61/SHINE, COMPASS)
 - NA61/SHINE ToF
 - 100 ps resolution
 - Long scintillator bars
- Multi-gap resistive plate chambers (MRPC)

12 m

- 61 chambers x 120 cm strips, 3 cm pitch
 - Used in ALICE TOF
 - 50 ps resolution achievable

Muon Identification

Muon come from $\succ \tau \rightarrow \mu$ decays $\succ v_{\mu}$ CC interactions $\succ \mu$ identification at primary vertex for background rejection

12 iron layers11 RPC layers6 Drift Tube Trackers Planes

Tau/anti-tau Separation

TASK

- Electric charge and momentum measurement of τ lepton decay products
- \succ Key role for the τ→h decay channel
- 3 OPERA-like emulsion films
- ➤ 2 Rohacell spacers (low density material)
- ➢ 1 Tesla magnetic field

PERFORMANCES

- \blacktriangleright Electric charge determined up to 10 GeV/c.
- Momentum estimated from the sagitta.
- ► $\Delta p/p < 20\%$ up to 12 GeV/c

LHM Search

Generated in the beam-dump, e.g. via light dark photon mediators (V)

- Main production modes
 - 1) direct production
 - 2) decay in flight
 - 3) resonant vector
 - meson mixing

LDM elastic scattering on atomic electrons of the target

High energy beam dump:

→ LDM-electron scattering is highly peaked in the forward direction

Strange Quark Content

Charmed hadron production in anti-neutrino interactions selects antistrange quark in the nucleon.

- Strangeness important for precision SM tests and for BSM searches.
- ≻W boson production at 14 TeV: 80% via *ud* and 20% via *cs*.

