

The Aerogel Ring Image Cherenkov counter for particle identification in the Belle II experiment

Contents

- Introduction
- Detector techniques and Construction
- Cosmic Ray Test
- Summary

<u>Tomoyuki Konno</u>

KEK INPS

Technology and Instrumentation in Particle Physics 2017, Beijing, China, 2017/05/23

Introduction

Belle II ARICH detector

Belle II experiment starts in 2018

– Search for New Physics in Flavor sector using 50ab⁻¹ of B decays

- Particle identification (PID) is a major upgrade in the Belle II
 - K/π ID is essential for many *B* decays sensitive to NP models

Principle of Aerogel RICH

- Proximity-Focusing Ring Imaging Cherenkov counter using Aerogel
- Particle mass is identified according to emission angle in aerogel radiator

 $-m = \frac{p}{c}\sqrt{n^2\cos^2\theta_c - 1}$ (n: refractive index, p: particle momentum)

- Cherenkov photons are measured as 2-D ring image
 - 6 mm difference in K/π Cherenkov rings on photo detectors

Target performance : K/π separation at > 4 σ C.L. @ p =4 GeV/c

Physics 2017@ Bejing

Practical requirements

- Several technical challenges for the Belle II operation
 - Compact detector in the Belle II end-cap
 - Operation in high magnetic field of 1.5T
 - Radiation hardness with 20 times higher γ/n than Belle I
 - Readout capability for 30 kHz of maximum trigger rate

Developed techniques for the ARICH counter

- Aerogel radiator tile with 2 different refractive indexes
- Position sensitive photo detector in magnetic field
- Two level readout electronics to the Belle II DAQ
- Power supply control system with remote access
- LED Light injection system for photon detector monitor

Detector techniques and construction

Photo detector for ARICH

Hybrid Avalanche Photon Detector (HAPD)

- Developed with Hamamatsu Photonics K.K.
- Good single photoelectron separation
- => 420 HAPDs are ready to be installed

Parameter	Requirements
Size	72 x 72 mm ²
# of pixels	144 ch (36 x 4 ch)
Pixel size	4.9 x 4.9 mm ²
Effective area	64 %
Peak Q.E.	28 %
Dark current	< 1 µA
HV	-8500V
Total gain	> 45000
¹²⁰⁰ 1p.e.	Pulse height distribution
1000 - single p.e.	
800 -	S/N > 10
600 -	
400 -	
200 -	

Output Pulse Height [ADC ch]

2500

3000

2000

Technology and Instrumentation in Particle

Frequency

500

1000

1500

Physics 2017@ Bejing

4000

3500

Performance in 1.5 T magnetic field

HAPD performance is measured to be totally improved in the magnetic field

- Reduces p.e. back-scattering cross-talk
- Increases detection efficiency
 - p.e. energy deposited at one place
- Rate non-uniformity due to electric field clearly disappears

More in poster by K. Ogawa (id:217)

HAPD support structure

Aluminum frame for 420 HAPDs

- Mirrors to reflect photons
- Polyethylene shields from neutron
- Installed HAPDs into 4/6 sectors
 - Will be finished in May 2017

Polyethylene shields

Silica Aerogel radiator

New Aerogel with high transparency

- Transmission length : > 40 mm
- Flexible refractive indexes
- Dual layers to focus ring images
 - Up/down: 1.045/ 1.055 ± 0.002
- Installation to the ARICH is completed!
 - 248 tiles for 3m² acceptance
- Details in talk by M. Tabata

20 mm 20 mm 200 mm n₁ n₂ n₁<n₂

Single 4cm aerogel layer

Two 2cm aerogel layers in focusing configuration

HAPD readout electronics

Two level of readout electronics located on behind the HAPDs

• 420 Frontend and 72 merger boards are installed by end of June 2017

Readout performance and slow control

Readout performance

- Merger with 6 FEBs to Belle II DAQ
 - With Poisson random triggers
- Achieved Belle II DAQ requirements
 - Running over 30 kHz

Slow control for the electronics

- Based on Belle II DAQ software
- Configure parameters on
 - FEB ASICs
 - FEB and MB FPGA
- Monitor temperatures/voltages
- Details in poster by M. Yonenaga (id:58)

Power supply

A power supply system for HAPDs

- 3 kinds of power inputs for each HAPD
 - HV for bombardment : 8000 V
 - Bias for a APD chip: 350 V
 - Guard for protection: 175 V=> 6 input channels for a HAPD
- CAFN HV crate and modules
 - HV : A1590N x 27 modules
 - Guard / Bias : A7042P x 45 modules
- Control software based on Belle II DAQ
 - Network based control
 - Software protection of HAPDs
- Details in poster by M. Yonenaga (id:58)

Light injection monitor system

LED light injection system into ARICH

- Monitor APD channels
 - 1 p.e. level measurement
- Light diffused from aerogel surfaces
 - Flat intensity on HAPD surfaces
 - 90 injection points with 6 LEDs
- Ready to be installed in coming month

Cosmic ray test

Cosmic ray test operation

Demonstration for ARICH real system

- Establish full data chain to Belle II DAQ
- Real Cherenkov ring images on HAPDs
- Tentative DAQ with installed modules
 - 16 HAPDs with 4 Mergers
 - Plastic scintillators for trigger

Cosmic ray DAQ

First combined test with the Belle II DAQ

- Minimum setup of the Belle II DAQ system
 - 4 Belle2Links on a COPPER board
 - FTSW board for Trigger timing signals
- Stability : Run > 12 hours with 0.1 Hz
- Synchronization : clear signals of ring images
 - The electronics were really synchronized

ARICH smoothly worked with the Belle II DAQ

Technology and Instrumentation in Particle Physics 2017@ Bejing

Cherenkov rings from cosmic rays

Extraction of Cherenkov ring images

- Fit hit patterns without tracking info.
 - Extract entry points and directions
- Obtained Cherenkov related parameters:
 - # of observed p.e. : 13 p.e.
 - Cherenkov angle: 17 degrees

=> Consistent with μ @ 0.5 - 4GeV/c

Successful operation of ARICH system

of signal hits per event

Summary

- Belle II experiment starts in 2018 to search for New Physics
- The ARICH counter is a major upgrade for the Belle II PID
- Several techniques were developed to observe Cherenkov rings
 - Silica Aerogel radiator and HAPD are key components for ARICH
- Cosmic ray test with partially installed modules was successful
 - Both of the ARICH detector and electronics worked as expected
- Construction of the ARICH will be finished by end of summer 2017

Related talks and posters:

- M. Tabata , "Assembly of a Silica Aerogel Radiator Module for the Belle II ARICH System"
- M. Yonenaga, "Development of the slow control system for the Belle II ARICH counter", Poster
- K. Ogawa et al, "Behavior of 144ch HAPDs for the Belle II Aerogel RICH in the magnetic field", Poster