

Axel König On behalf of the CMS Collaboration

The CMS Tracker Phase II

for the HLFLHC Era

grade

TIPP 2017 - Beijing

24 May 2017

CMS

Contents

- The HL-LHC schedule
- Upgrade motivations
 - Requirements
- Track trigger concept
 - p_T modules
- Outer Tracker electronics
- Tracker layout and mechanics
- Outer Tracker sensor R&D

The High Luminosity LHC (HL-LHC)

Around 2024 (during LS3), the LHC will be upgraded to the HL-LHC

- Increase in instantaneous luminosity by a factor of ~ 5
- Expected int. luminosity of 3000 fb⁻¹ to 4000 fb⁻¹ after 10 years of operation
- At the same time, the CMS experiment will be upgraded as well
 - Muon chambers, ECAL and HCAL (especially front-end electronics)
 - Increase of L1 trigger rate and latency (750 kHz and 12.5 μs)
 - New silicon based endcap high granularity calorimeter (~ 600 m² of silicon)

Complete replacement of the CMS tracker (pixel and strips)

LHC					HL-LHC		
Run 1	LS1	Run 2	LS2	Run 3	LS3	Run 4 - 5	
$L \approx 8.10^{33} \text{ cm}^{-2} \text{ s}^{-1}$		$L \approx 1.5 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$		$L \approx 1.5 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$		$L \approx 5.10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	
$\pounds \approx 30 \text{ fb}^{-1}$		$\pounds < 300 \ fb^{-1}$		$\pounds \approx 300 \text{ fb}^{-1}$		$\pounds \approx 3000-4000 \text{ fb}^{-1}$	
√ <i>s</i> = 7-8 TeV		√ <i>s</i> = 13-14 TeV		$\sqrt{s} = 14 \text{ TeV}$		$\sqrt{s} = 14 \text{ TeV}$	
PU ≈ 25		PU ≈ 50		PU ≈ 50		PU ≈ 140 - 200	
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 ···							
Ne are here							
24.05.2017 Axel König					2		

Why do we need an upgrade?

- 1. To fully exploit the high luminosity conditions
- 2. Design limitations of current tracker will be exceeded by far

	Design limitations of current Tracker	HL-LHC conditions		
Pileup	20-30	140-200		
int. lumi.	< 1000 fb ⁻¹	3000-4000 fb ⁻¹		

- 3. Radiation damage will lead to many non-functional modules
- Increased leakage current cannot be compensated by cooling anymore

Simulation of non-functional modules of the current tracker (in blue) after 1000 fb⁻¹ int. luminosity.

24.05.2017

Axel König

Requirements for the Tracker upgrade

- **1. Maintain physics performance**
 - Introduce track trigger concept
- 2. Increased radiation hardness
 - Efficient operation up to:
 - $2.3 \times 10^{16} \, n_{eq}/cm^2 \rightarrow Pixel$
 - $1 \times 10^{15} n_{eq}/cm^2 \rightarrow Strips$
- 3. Reduced material budget
- 4. Extended tracking acceptance
 - $|\eta| = 2.4 \rightarrow |\eta| = 4$
- 5. Increased granularity
 - Keep channel occupancy < 1 %

Motivation of the track trigger concept

- The current CMS L1 trigger rate is limited to 100 kHz
 - HL-LHC rates of e, µ and jets exceed this limitation by far!
- How to maintain physics performance?
 - Drastic increase of trigger p_T thresholds
 - Unacceptable restriction of physics performance

Increase L1 trigger rate to 750 kHz
Alone not sufficient

• Filter p_T at module level

Concept of p_T discrimination at module level

- Two stacked and closely spaced silicon sensors housed in one module
- Correlating the hit positions on both sensors enables p_T discrimination
 - Different curvatures for different particle transverse momenta
- Selection of p_{T} by adjusting hit matching window (variable) and sensor spacing (fixed)
 - > p_T threshold of 2 GeV → data reduction of **one order of magnitude**
- Hit pairs corresponding to particles having a p_T > 2 GeV are called "stubs"
 - Transmitted at 40 MHz bunch crossing frequency to L1 trigger

p_T modules: 2S module

- Two stacked silicon strip sensors with parallel strip orientation [pic. #1]
 - Strips are segmented at the center
 - $127 \times 8 \times 2$ (2032) AC-coupled strips per sensor
 - Strip dimensions:
 - 5 cm long, 90 µm pitch
 - Sensor size: $10 \text{ cm} \times 10 \text{ cm}$
- Front-end electronics:
 - CMS Binary Chip (CBC), 16 chips per module [pic. #10]
 - Readout and hit correlation
 - Concentrator ASIC (CIC) [pic. #11]
 - Buffer, aggregate and format data of CBC
 - DC/DC converter [pic. #8]
 - Low-power gigabit data transceiver (LpGBT) [pic. #8]

p_T modules: PS module

- One silicon strip sensor (PS-s) and one silicon macro pixel sensor (PS-p) stacked [pic. #1, #2]
 - AC-coupled PS-s: 2.4 cm x 100 µm
 - DC-coupled PS-p: 1.5 mm x 100 µm
- Front-end electronics:
 - PS-s readout → Short Strip ASIC (SSA)
 - PS-p readout → Macro Pixel ASIC (MPA)
 - Bump bonded to PS-p
 - Performs hit correlation
 - Cooling via carbon fibre reinforced polymer (CFRP) base plate [pic. #5]
 - Concentrator ASIC (CIC) [pic. #10]
 - Buffer, aggregate and format data
 - DC/DC converter [pic. #8]
 - Low-power gigabit data transceiver (LpGBT) [pic. #7]

Outer Tracker electronics

2S modules

PS modules

7680 pcs.

Sensor spacing

1.8 mm

4.0 mm

Phase II Tracker layout

- Extended coverage up to $|\eta| = 4$
- Tilted layout for the PS barrel modules
 - Reduces geometrical stub finding inefficiency at large incident angles
 - Cost and material reduction
 - ~ 1300 PS modules less needed
 - Drawback: More complicated mechanics

Outer Tracker mechanics – inner layers

- PS modules tilted towards the interaction point
 - Tilt angles: 47° to 74°
- Modules of flat section supported by plank structures
 - Foam core with carbon fibre skins
 - Cooling pipe in mid of the plank
 - Phase change thermal interface material for thermal connection of modules
- Tilted modules placed on ring structures (carbon fibre foam sandwich)
 - High conductivity carbon fibre / epoxy laminate used to attach modules to support ring

Outer Tracker mechanics – outer layers

- Barrel mechanics
 - 2S modules mounted on ladders (12 modules per ladder)
 - Made out of carbon fibre C-shaped profiles
 - Cooling pipes transits full length of ladder
 - Ladders are supported by wheel
 - Essentially a copy of the wheel used for the current tracker
- Endcap discs
 - Split in half discs → two are grouped to form a double disc
 - Lower radii → PS modules
 - Higher radii \rightarrow 2S modules
 - Cooling pipes run inside the sandwich structure of the discs

Half endcap disc

Axel König

Radiation hard sensor material for the outer Tracker

- A large campaign to was carried out to find the optimal sensor material (HPK campaign)
 - Constraint: Should withstand fluences of up to 1×10¹⁵ n_{eq}/cm²
- Outcomes:
 - 1. Float-zone as well as magnetic Czochralski are suited
 - 2. n-in-p sensors show higher signal than p-in-n sensors after irradiation
 - 3. Non Gaussian noise observed for p-in-n sensors
 - 4. Thin sensors preferred
 - Better annealing behavior
 - Higher signal after irradiation
 - Less current after irradiation

Outer tracker sensor prototyping

- Sensor layouts nearly finalized
- Still under investigation:
 - Design optimizations for PS-p sensors
 - Modified biasing scheme for 2S sensors (bias rail at the sensors center)
 - Deep diffused base material
 - ➢ Backside implant deeply diffused into the bulk → active volume < physical volume
- Several prototype batches have been produced and characterized
 - > 2S sensors: Multiple batches of two vendors
 - PS-p sensors: One prototype batch containing small versions of the actual sensor (PS-p light)
 - PS-s sensors: Prototype batch expected by the end of this year
- So far, radiation hardness could be confirmed

2S layout

1-1.5 expected fluence of 2S sensors

Outer Tracker sensor procurement

- CMS started a market survey which is currently ongoing
- Joint effort of CMS and ATLAS
 - Structured in three steps
 - 1. Technical questionnaire
 - 2. Provide "sensor like" samples
 - 3. Prototype run with tight specifications
- Aim: Find at least two vendors
 - Redundancy and pricing benefits
 - > 50 % of sensors produced by each vendor
 - Both capable of producing all sensors
- Current status: Between step 2 and 3
 - Three possible vendors already identified
 - HPK (Japan), Infineon (Austria) and Novati (U.S.)

Prototype wafer of Infineon

۲

Summary

- The R&D for the Phase II Tracker is already very advanced
 - Sensors, module design, electronics, layout, mechanics, etc.
- However, there is still a lot of work to do
- Technical proposal already published in 2015

Technical design report (TDR) of the CMS Tracker Phase II upgrade is expected to be published in autumn this year!

Backup

The present CMS detector

24.05.2017

Axel König

Material budget

- Material budget simulated using tkLayout software
 - Developed in context of the Phase II upgrade \bullet
- Significant reduction of material budget
 - Especially for $|\eta| > 1.5$ •

Present Tracker

2S prototype modules

- Prototyping started with 2S mini module
 - Only one sensor readout by 2 CBCs
- Full scale 2S module prototype built and tested at the SPS at CERN
 - Two stacked full scale 2S sensors
 - 2×8 CBC chips (generation 2)
 - Without CIC, LpGBT and DC/DC converter

Stub reconstruction efficiency for unirradiated (red) and irradiated module (blue)

2S mini module

Full scale 2S prototype module

PS prototype modules

- Mini module (MaPSA light) build and tested
 - Small version of PS-p sensor
 - 288 macro pixels
 - Readout by 6 MPA light prototype chips
 - Without stacked PS-s sensor

Outer Tracker front-end electronics (2S modules)

L1 track finding approaches

1. FPGA-based Hough transform

- Stub with defined (r, ϕ) represents a line in Hough space (ϕ , q/p_T)
- Set of stubs corresponding to a high p_T track form intersecting lines in Hough space
- Intersection point defines parameters of track

2. FPGA-based tracklet

- Tracklet: Pairs of stubs in adjacent layers
 - Must be consistent with p_T > 2 GeV
 - Performed in parallel for multiple pairs of layers
- Helix parameters used to project trajectories to other layers
- Linearized χ^2 fit determines final track parameters

3. Associative Memory (AM) + FPGA

- 1. Find low resolution tracks candidates "roads" using AM based pattern recognition
 - Highly parallel pattern comparison in AM
- 2. Final track reconstruction realized in FPGA
 - Reduced combinatorics due to previous step

