

# 3D Diamond Development for tracking and dosimetry measurements

lain Haughton, PhD The University of Manchester iain.haughton@cern.ch



## Authors

[1] The University of Manchester – Manchester, UK Alex Oh, Iain Haughton, Steve Murphy, Giulio Forcolin, Francisca Munoz Sanchez, Olivier Allegre, David Whitehead

> [2] The University of Oxford – Oxford, UK Martin Booth, Patrick Salter

[3] Ruder Boskovic Institute – Zagreb, Croatia Milko Jaksic, Natko Skukan



## Introduction – why 3D?



Build an ultra radiation tolerant particle detector. Improve the performance of polycrystalline diamond for high precision particle detectors.



• Carriers have to travel a much shorter distance in 3D to get equivalent charge induced.

Number of carriers  

$$h(t) = n_0 e^{-t/\tau}$$
  
Carrier lifetime

- $\tau$  decreases with radiation exposure.
- $\tau$  is smaller in polycrystalline diamond than in single crystal diamond.



## Introduction - applications

• High energy physics:





• Medical dosimetry (proton therapy):







## Fabrication

The University of Manchester – Manchester, UK

The University of Oxford – Oxford, UK

[4] M. Booth et al, "Three dimensional laser micro fabrication in diamond a using dual adaptive optics system", Opt. Express (2011).

[5] M. Booth and A. Jesacher, "Parallel direct laser writing in three dimensions with spatially dependent aberration correction", Opt. Express (2010).



## Column formation - laser processing







- Laser wavelength = 800nm.
- Laser pulse length = 120fs.
- Transform sp<sup>3</sup> diamond (non conductive material) into a combination of diamond-like carbon, amorphous carbon and graphite (conductive material).







































## **Objective lens**

Numerical Aperture (NA):

• Higher NA  $\rightarrow$  Increased focal resolution.



[6] Kroto Imaging Facility, The University of Sheffield.



## Light aberration





The University of Manchester





The University of Manchester



[7] F.Bachmair et al., NIMA 786 (2015) 97-104



## Spatial Light Modulator (SLM) correction

Phase shift/  $\pi$ 





#### Laser setup





## Laser setup – Manchester











[4], [5]





|             |       | Translation speed |        |        |        |
|-------------|-------|-------------------|--------|--------|--------|
|             |       | 5um/s             | 10um/s | 20um/s | 30um/s |
| Beam energy | 100nJ | х                 | х      |        |        |
|             | 200nJ | х                 | х      | Х      |        |
|             | 300nJ |                   | Х      | Х      | Х      |
|             | 400nJ |                   | Х      | Х      | Х      |
|             | 500nJ |                   |        | Х      | Х      |
|             | 600nJ |                   |        |        | X      |

• Repeat with and without SLM.



## X polarisers



• Optical grade single crystal diamond.



## X polarisers



• Post processing.







## Surface measurement





## Surface measurement





## Raman – with SLM



Exit surface exhibits a higher ratio than the seed:
 → Possibly due to ejection of material.

30



## Raman – without SLM



Seed surface exhibits a much higher ratio than the exit:
 → Light aberration is maximum at the seed surface.



## Internal structure



[5] K.K. Ashikkalieva et al., Carbon 102 (2016) 383-389





X polarisers

Metallisation in Manchester:

- Chromium
- Gold

Seed surface structured. Exit surface pad.

## Metallisation





## IV curves

• Ohmic and barrier potential curves observed.





## Barrier potential









36



## With SLM





## With SLM





The University of Mancheste

#### Resistance



- Decreases as a power law  $\rightarrow$  multi-photon absorption.
- Clear discrepancy at 30um/s.



## Raman – with SLM



No discrepancy seen in Raman at 30um/s.
 → Surface measurement.



## Barrier energy





### Multiple passes



Multiple passes reduces resistance and increases uniformity of the columns.



## Multiple passes





The University of Manchester

#### Lens NA



 $\rightarrow$  Reduced resistance at 200nJ.









## Summary

The method of column production has been vastly improved using an SLM.

 $\rightarrow$  However, high column resistivity is still a problem.

I've shown preliminary results for a comprehensive study of drilling parameters, including the measurement of:

- Surface diamond:graphite ratios.
- Morphology.
- IV characteristics.
- SLM is key to maintain the effective lens NA with depth.
- Higher NA  $\rightarrow$  higher focal resolution  $\rightarrow$  lower column resistivity.
- Speed needs to be tuned in order to minimise barrier potential.

Resistivity can be reduced further, but it takes much longer to form columns.

#### Future $\rightarrow$ lower resistivity in manageable timescales.



## Thank you



## Back up



| Property (relative to silicon) | Silicon | Diamond                        |
|--------------------------------|---------|--------------------------------|
| Energy gap                     | 1       | 5<br>(3.5 <i>e-h</i> creation) |
| Dielectric constant            | 1       | 0.5                            |
| Thermal conductivity           | 1       | 13.5                           |
| Thermal expansion coefficient  | 1       | 0.03                           |
| Electron mobility              | 1       | 3.0                            |
| Hole mobility                  | 1       | 6.3                            |
| Displacement energy            | 1       | 1.4                            |



## Introduction – types of diamond



Single Crystal

- Very good carrier properties.
- Small areas available.

#### Polycrystalline



- Reduced mean free path of carriers.
- Large areas available.





$$\Delta \phi = n_2 l_2 - n_1 l_1$$

- Apply Snell's law.
- Assume lens obeys sine condition.

$$\Delta \phi(r) = -\frac{2\pi d}{\lambda_0 f} \left[ \sqrt{f^2 n_2^2 - r^2} - \sqrt{f^2 n_1^2 - r^2} \right]$$

[5], [6]









• Integrate around the optical axis.

















The University of Manchester

Current (I) versus applied bias voltage ( $U_{\rm b}$ ) measurement:

- *Keithley* 2410 source meter.
- Exit surface grounded.
- Seed surface probed.





## Transient current signals at 20V



The University of Manchester



## Charge production at depth

The University of Manchester





Depth (µm)

## Column resistance



60

Entries [a.u.]



## Sample flipping



61