

The Phase-1 Upgrade of the ATLAS Level-1 Endcap Muon Trigger

Shunichi Akatsuka (Kyoto University) on behalf of the ATLAS Collaboration

TIPP 2017 @Beijing 22-26 May, 2017

Introduction

- LHC Run 3: 2021~ 2023
 - Instantaneous luminosity will be 3×10³⁴ cm⁻²s⁻¹
 - More than twice the Run 2 luminosity

- Phase-1 Upgrade for Level-1 Endcap Muon Trigger
 - With Run 2 trigger system, the rate for muon trigger with p_T > 20 GeV will become <u>28 kHz</u> @ 3×10³⁴ cm⁻²s⁻¹ (TDAQ TDR, <u>ATLAS-TDR-023</u>)
 - Run 3 requirement is $15 \text{ kHz} \leftarrow -50\%$ rate reduction is required
 - More powerful trigger strategy is needed to reduce the trigger rate, while keeping the trigger threshold and the efficiency

Level-1 muon trigger performance

• η distribution of the Level-1 Muon Trigger with $p_T > 20$ GeV

① Trigger with no matching real muons (Fake muon)

2 Trigger by Low pT muons

 \rightarrow Reject these triggers by introducing new coincidence logic!

Level-1 Muon Trigger Strategy

- TGC Big Wheel + <u>Coincidence with detectors inside</u>
 - → Reject fake muons

Run 3 Level-1 Endcap Muon Trigger 5

Hardware and Firmware Development

New Sector Logic Board design

New Sector Logic Board design

Run 3 Readout system

IEEE Trans. Nucl. Sci. Vol.55, No.3, June 2008, [LINK]

Firmware Design

Test Beam @SPS

• Aim of the test:

- To test the phase-1 readout system and firmware
- To confirm that TGC self-trigger using data received via GTX can be implemented on the New Sector Logic firmware.
- Test Beam Setup:

11

Test Beam @SPS

• Aim of the test:

- To test the phase-1 readout system and firmware
- To confirm that TGC self-trigger using data received via GTX can be implemented on the New Sector Logic firmware.

12

Trigger Logic and Performance

BW dR-d Coincidence

Main idea of the trigger logic:

- dR, d ϕ defined as the hit position difference between M1and M3
- dR, d ϕ is combined, trigger decision is made using Look-Up Tables
- ► Take coincidence with detectors inside to reject fake/low-p_T muons
 - \rightarrow New LUT for the Inner Coincidence gives

Position matching: BW - NSW

- NSW position information can be used for p_T decision
 - Using information from NSW with high granularity (d $\eta \sim 0.005$) will realize higher performance on pT distinction than using only BW, with lower dR granularity (d $\eta \sim 0.02$)

Position matching: BW - NSW

• NSW $p_T = 20 \text{ GeV}$ prmation can be $p_T = 40 \text{ GeV}$ decision

Rate Estimation

p⊤ distribution of the muons that passed p⊤ > 20 GeV trigger

- Low p⊤ muons are eliminated effectively, while keeping high p⊤ muons
- Note: Fake triggers are rejected even more

Summary

- Upgrade of the muon trigger system is required for Run 3:
 - Take coincidence with NSW to reject fake and low p⊤ muons.
 - New hardware is needed to combine data from current trigger chamber BW, NSW, and several other detectors.
- Hardware and Firmware development status
 - New trigger processor board, New Sector Logic, has been produced.
 - Other modules to read out the trigger data are also being developed.
 - Firmware design has been completed including the readout path.
 - Test beam has successfully been done using the new readout system.

Trigger Logic and Performance

- Taking position matching and angle matching between BW and NSW can reject low p⊤ muon candidates effectively.
- The estimated rate < <u>13 kHz</u> @ L = 3×10³⁴ cm⁻²s⁻¹, which meets the phase-1 requirement of 15 kHz. (<u>ATLAS-TDR-023</u>)

backup slides

Physics Motivation

Run 3 trigger rate estimation

 Without the phase-1 upgrade, to keep the trigger rate to the require level, the pT threshold will need to be raised to ~40 GeV.

Physics Acceptance

 If the threshold is raised to 40 GeV, the efficiency for muons from the decays of W boson produced in association with Higgs will be 61%.

New Small Wheel

Consists of sTGC and Micromegas

- sTGC: small strip TGC
 - TGC chamber with strip width of 3.2mm, smaller than the strip width of current TGC (> 15 mm)
 - 4 wire-strip pairs are combined to make 1 module.
 - position resolution 60~150 μ m

Micromegas: micro mesh gaseus structure

- position resolution ~90 μ m
- 8 layers are sandwiched by sTGC 4-layer modules, to compose the New Small Wheel

Resolution: position ~30 μ m angle ~0.3 mrad.

Region of Interest

- The smallest unit for the Level-1 Muon Trigger:
 - Each side is divided into 72 parts, shown as green line in this figure
 → 72 'Sectors' per side
 - Each Sector is divided into 148 (or 64) 'Regions of Interest' (Rol).
 - One New Sector Logic board handles 2 Sectors,
 i.e. 296 Rols (or 128 Rols)

- Trigger decision is performed Rol by Rol
 - \rightarrow 296 trigger decision logic should run in parallel inside one FPGA
 - \rightarrow 296 individual LUTs should be implemented

Data format from the NSW

- One NewSL board receives data from max. 3 NSW sectors.
- Each NSW Sector sends track information of max. 8 tracks using
 2 optical fibers.

Words	first byte		second byte			
Word-0	comma		comma			
Word-1	track-0					
Word-2						
Word-3	track-1					
Word-4	track-2					
Word-5						
Word-6	track-3					
Word-7	ID (4-bit)	BCID (12-bit)				

Data format for each track:

Field:	sTGC type	MM type	$\Delta \theta$ (mrad)	Φ index	R index	Spare	
Num of bits:	2	2	5	6	8	1] = 24 bits

Angle matching algorithm

- Further performance can be acquired using NSW angle info.
 - $d\theta$ has information on the <u>actual I.P.</u> + the <u>effect of multiple scattering</u>
 - combining position and angle appropriately can enhance the trigger performance

TGC BW

Angle matching algorithm

• Furt $p_T = 20$ GeV nce can be acq $p_T = 40$ GeV SW angle info. 35 η_{BW} - η_{NSW} η_{NSW} <u>e scattering</u> 0.15 0.15 35 ATLAS Simulation Preliminary ATLAS Simulation Preliminary 30 Phase I upgrade study Phase I upgrade study 0.1 0.1 30 $p_{-}^{muon} = 20 \text{ GeV}$ $p_{-}^{muon} = 40 \text{ GeV}$ GC BW 25 25 0.05 0.05 20 20 М3 0 15 15 M1 -0.05 -0.05 10 10 -0.1 -0.1 5 5 $\eta^{\text{Rol}} = -1.93, \phi^{\text{Rol}} = 0.26$ $\eta^{\text{Rol}} = -1.93, \phi^{\text{Rol}} = 0.26$ –0.15⊢ -0.15 0.005 0.01 0.015 -0.015 -0.01 -0.005 0 0.01 0.015 -0.015 -0.01 -0.005 0 0.005 $d\theta$ [rad.] $d\theta$ [rad.] NSW $d\eta$ cannot High p⊤ Low pt distinguish multiple Toroidal scattering combining Magnetic $d\eta$ and $d\theta$ IP Field can distinguish ~ 10 cm calorimeter 13 m 14.5 m 7 m

Trigger Performance

- New Inner LUTs uses NSW position & angle information
- Efficiency is calculated by simulation, for L1_MU20
 (L1_MU20: Level-1 trigger for muon with pT > 20 GeV)
- The track finding efficiency is assumed to be 97%

Implementation of LUTs

 3 LUTs, BW (dR-dφ), NSW (dη:dφ), and NSW (dη:dθ) are implemented separately, and their results are merged afterwards at the last LUT, p⊤ merger LUT.

S-LINK Card

- Developed a PCI-express card supporting S-LINK
 - Needed for the SROD to send data via S-LINK
 - Final board came in the end of Feb. 2017
- Key Function:
 - FPGA: Xilinx Kintex-7, XC7K160T
 - SFP+: 3 SFP+ ports available, for optical transceiver
 - Open-drain output: for busy output
- Test status
 - Sent data from the S-LINK card via SFP+, to the receiver board on another PC.
 - → Succeeded in data transfer.
 Rate test is going to be done.
 - Started to finalize the software and the firmware.

