

PACIFIC

a readout ASIC for the LHCb Scintillating Fibre Tracker

A.Comerma, D. Gascón, H. Chanal, J. Mazorra, N. Pillet, R. Vandaele, S. Gómez, X. Han*
UB Barcelona, IFIC Valencia (SPA), LPC Clermont Ferrand (FRA), PI Heidelberg (GER)
*Physikalisches Institut, Universität Heidelberg

On behalf of the LHCb SciFi Collaboration

presented at Technology and Instrumentation in Particle Physics 2017

May 23th, Beijing

LHCb Upgrade

increase the luminosity to 2×10^{33} cm⁻²s⁻¹ to boost significantly the physics reach

- more severe radiation environment
- 40MHz readout triggerless
- 5× current occupancy

the current Tracking Stations
(Gas Straw Tube Tracker + Silicon Tracker)
replaced by

Scintillating Fibre Tracker

total area $340m^2$, resolution $< 100\mu m$

Schematic view of the current LHCb detector

Scintillating Fibre Tracker (SciFi)

- 250µm diameter scintillating fibre wound into a 6-layer 2.5m-long fibre mat
- ✓ one end equipped with a mirror
- ✓ read out by SiPM arrays (single channel: 250µm×1.625mm, 104pixels)
- 3 × Tracking Stations => 524,000 SiPM channels

More related talks:

SciFi-A large Scintillating Fibre Tracker for LHCb by Ulrich Uwer 23/5/2017 TIPP parallel section
Characterisation of the Hamamatsu silicon photomultiplier arrays for the LHCb Scintillating Fibre Tracker Upgrade by Axel Kuonen 23/5/2017 TIPP parallel section

Design Challenges for the Readout ASIC

- handle the long-tail SiPM signals with high detector occupancy?
 - ✓ minimize the spillover effect
 - ✓ reduce dead time
 - ✓ sufficient response plateau

SiPM recovery

light propagation along 2.5m long fibre

- in total 524,000 SiPM channels to be read out at 40MHz?
 - ✓ most efficient way to digitize and process the data
 - ✓ low power consumption

PACIFIC a low Power Asic for the sCIntillating Fibre traCker

- 64-channel current mode input
- configurable fast shaper : minimize spillover

power consumption <10mW/channel

CMOS 130nm Technology

- interleaved gated-integrators per channel: minimize dead time
- 2-bit non-linear digitisation per channel: minimum data for sufficient tracking information
- adjustable input anode DC voltage (4-bit DAC, 50mV/LSB)

Prototype

2018 - 2019 2013.05 2013.11 2014.08 2015.08 2016.09 2017.03 PACIFIC_r0 PACIFICr1 PACIFICr2 PACIFICr3 PACIFICr4 PACIFICr5 preamplifier only single channel 8-channel 64-channel 64-channel 8-channel full analog chain full analog chain single-ended output single-ended output differential output full design full design full design mass production expected & back in detector May installation

Preamplifier

- double feedback current conveyor (50Ω input impedance, 250MHz bandwidth)
- 4× selectable gains at the output mirror
- closed loop transimpedance amplifier to convert current into voltage

Fast Shaper

- double pole-zero cancellation for the SiPM signals
- ✓ first pole-zero cancels the slow component from SiPM capacitance and quenching resistor
- ✓ second pole-zero cancels the fast component from trace parasitics and input impedance
- parameters tunable via slow control registers to adapt to different types of SiPMs

Interleaved Gated Integrators

- one integrator is working, while the other is reset: minimum dead time
- integration synchronized with the system clock

block diagram of the PACIFIC interleaved gated integrators

PACIFICr4 integrator response measured with light injection

Digitisation

- analog signal digitized by three threshold-tunable comparators per channel
- three thresholds based on the cluster algorithm
 - ✓ **low** threshold: noise suppression
 - ✓ middle threshold: cluster candidate
 - ✓ **high** threshold: single channel clusters

sketch of a typical cluster produced when particles passing through the SciFi detector

Light Injection Result

- 5ns-width light pulse generated by vertical-cavity surface-emitting lasers (VCSEL)
- using SciFi custom SiPM arrays

Test Beam at DESY 2017

- DESY beamline T22, Feb 2017
- 1~6 GeV electrons (maximum rate @ 2 GeV) continuous beam

SciFi prototype module

covered in black blanket for light tightness

cooling bar

to keep the SiPM temperature stable

SciFi module read out by custom SiPM arrays and PACIFICr4

wire-bonded PACIFICr4

with glob top

SciFi SiPM array

with flex cable

Cluster Size & Spatial Resolution

Conclusions and Future Plans

- a low power ASIC designed for the LHCb Scintillating Fibre Tracker
 - ✓ configurable fast shaper
 - ✓ minimum integration dead time
 - ✓ 40MHz readout
 - ✓ 2-bit data per channel to encode signal amplitude
- the full design prototype has been evaluated in the test beam at DESY in Feb 2017
- a new version with SLVS differential output submitted and will be back soon
- plan to launch engineering run at the end of 2017

Thank you!

Questions?

