

R&D studies of new photosensors for the Hyper-Kamiokande detector

Alan Cosimo RUGGERI*+

*On behalf of the Hyper-Kamiokande Proto-Collaboration

⁺ Dipartimento di Fisica "Ettore Pancini" Università di Napoli Federico II and NFN, Naples, Italy ⊠ acruggeri@na.infn.it

Hyper-Kamiokande

• A future plan of v experiments with about 0.5 Mton (total volume in two tanks) water-Cherenkov detector (187 kton fiducial mass per tank). High sensivity with much higher statistics thanks to the large size. • A challenge for innovation because of the very large tanks with high water pressure

Physics potential

• v oscillations, leptonic CP violation, v mass hierarchy, etc. by high time and charge

International conference on Technology and

resolutions, high detection efficiency

And about 7,000 PMTs Nucleon decay discovery by ~ nsec time resolution and low background • Astroparticle physics studies \rightarrow measurements of accelerator, solar, atmospheric, for Outer Veto Detector and SNa neutrino, etc. by high rate tolerance, low background, clear photon counting

Photosensor improvements over the years and experiments

Physics sensitivities are essential to reach mentioned purposes, hence large-aperture photodetectors (PDs) are needed. The photodetectors below have higher quantum efficiency (QE) (30%) than the SK PMT (22%).

+2kV, 10⁷ gai

Venetian blind dynode type PMT (Super-K)

The multi-PMT detector

Based on the KM3NeT experience, a mPMT photodetector system is candidated to be placed in combination to large single PMTs. It consists of an acrylic spherical vessel with 26 3" PMTs inside.

3" PMT × 33

R12199 PMT used for the first HK vessel prototype

x2 tanks

Left: Exploded diagram of the KM3NeT optical module

The Hamamatsu R3600, in use in Super-K.

- The performance is established and reliable (for > 20 years) The high QE prototype has
- already been made • Electron might miss 1st dynode = less collection efficiency
- Ambiguity of drift path limits charge and time response
- Not suitable for 60 m depth of the Hyper-K tank

The Hamamatsu R12860-HQE, a photodetector developed for the Hyper-K baseline design.

Box & Line type PMT

 $(50 \text{ cm } \emptyset)$

- PMT with a different type of dynode
- High collection efficiency • Uniform drift path \rightarrow High charge and time resolutions
- high QE
- Fast time response by linear focused dynode
- Double improvements on efficiency and resolution
- Established in 60-80 m water depth with an external cover

Hybrid PhotoDetector (HPD) $(50 \text{ cm } \emptyset)$

- The Hamamatsu R12850-HQE avalanche diode (AD) instead of dynode. **Under development for** possible further improvements of the Hyper-K.
 - Simple structure inside and low cost The high voltage (HV) is higher than PMT Good signal resolution

Small PMTs are commercially available and more performant PMTs are corrently under development \rightarrow Looking into 3" PMTs with superior timing resolution

Better resolution, photon counting and directionality wrt one large PMT PDs and electronics arranged within a pressure resistent vessel Ongoing mPMT optimization studies based on simulation R&D on PMT read-out system under way

An initial prototype is being realized in INFN-Napoli, in collaboration with the INFN and the Polytechnic of Bari. It will be ready by summer 2017.

Vessel studies

Tests on acrylic samples from several companies

- No radioactive contamination (e.g., ⁴⁰K) due to acrylic instead of glass
- Optical and mechanical tests have been done
- Water-absorption nuclear and radioactive-contamination tests are ongoing in the CIRCE in Caserta (SUN) and in the Laboratori Nazionali
- del Gran Sasso (L'Aquila Italy).

- G. De Rosa & T. Fuesels, «A multi-channel optical module for the Hyper-Kamiokande experiment», poster for Neutrino 2016, South Kensington, London 4)
- mPMT under development \rightarrow initial prototype ready by summer 2017