

Development of High Precision Polarimeter for the charged particle EDM Experiment

on behalf of the **JEDI** collaboration TIPP 2017 | Beijing

Outline

- Mission of JEDI Collaboration
- COSY Accelerator Facility
- New Polarimeter Concept
- Experimental Results
- Summary

Jülich Electric Dipole moment Investigation

http://collaborations.fz-juelich.de/ikp/jedi/

> 100 members & different Institutes from 7 country

In the **SM**, the **CP** violation originates from the complex phase in the Cabibbo-Kobayashi-Maskawa (*CKM*) matrix, which couples the quarks' weak and the mass eigenstates, and the θ term in the QCD Lagrangian.

 $\begin{array}{l} \textbf{CP} (\textit{K}^{\circ} \text{ decays}) \text{ violation means } \textbf{T} \text{ is also violated assuming } \textbf{CPT} \text{ symmetry.} \\ \text{The existence of a non-zero EDM is a violation of P and T simultaneously} \\ \& \text{ the search for a EDM is a search for } \textbf{CP} \text{ violation and} \\ a \text{ search for } \textbf{direct } \textbf{T} \text{ symmetry violation.} \end{array}$

SM CP violation is enough to explain what has been observed in the *K* & *B* meson systems but orders of magnitude smaller than observed in the universe $\begin{bmatrix} m_1^{-1} \\ m_2^{-1} \end{bmatrix}$

$$\eta = \frac{N_B - N_{\bar{B}}}{N_{\nu}} = \sim 10^{-18} (SCM) \sim 6 \cdot 10^{-10} (BAU)$$

1967: Sacharov conditions for the Baryon Asymmetry of the Universe

- 1) At least one N_{B} violating process.
- 2) C and CP violation
- 3) Interactions outside of thermal equilibrium.

Measurement of the non zero EDM → physics beyond SM

May 23rd, 2017

Irakli Keshelashvili

Storage Ring – srEDM

For all *EDM* experiments Interaction of *d* with *E* is necessary!

$$\frac{d\vec{s}}{dt} \propto d \cdot \vec{E} \times \vec{s}$$

Store polarized deuterons (COSY)

Phys. Rev. Lett. XXX (2017) Feed-Back Phys. Rev. Lett. 117, 054801 (2016) Phys. Rev. Lett. 115, 094801 (2015) 0 0 0 Interact with an E-field (*Wien-Filter*)

Analyze Polarization Build-up (this talk)

build-up of vertical polarization \vec{S}

1000 Time [s]1500

COSY Accelerator Facility Cooler Sychrotron

Internal and external beams High polarization (p, d) Spin manipulation !!!

Energy range (min.-- max.): 0.045 - 2.8 GeV (p) 0.023 - 2.3 GeV (d) Max momentum ~ 3.7 GeV/c Electron & Stochastic cooling Feed-forward machine

JEDI Polarimeter High Precision Polarimeter Concept

May 23rd, 2017

Irakli Keshelashvili

Data Acquisition System Flash ADC Based System

May 23rd, 2017

Irakli Keshelashvili

First Step: LYSO Crystal Test E-Linearity, E/T-Resolution, d-Efficiency, DAQ, Bragg Peak, Vendors,...

May 23rd, 2017

Irakli Keshelashvili

Results of LYSO Tests Study of the LYSO Properties

- Test of FADC (250 MS/s, 14-bit) 'dead-time less' DAQ system Full signal shape were recorded
- Linearity of particle energy vs. light output up to 270 MeV
- Energy Resolution ($\frac{FWHM}{Amp} \sim 1\%$), time resolution $\Delta t \sim 300 ps$
- d detection/reconstruction eff. @ 270 MeV drops ~ 70%
- Measuring Bragg-Peak by rotating split LYSO, peak @ 6 cm @ 270 MeV → crystal length 8 cm (can be flipped)
- Tests of Saint-Gobain and EPIC Crystals with PMT & SiPM (C)

Irakli Keshelashvili

Second Step: New Modules LYSO+SiPM Module Concept

24 x LYSO+SiPM Module Tested December 2016/March 2017 Beam Time

May 23rd, 2017

Irakli Keshelashvili

Photo Gallery

May 23rd, 2017

Irakli Keshelashvili

JEDI Collaboration

12/18

SiPM Voltage Supply Very Good Long Term Stability ~ 1 μ V_{pp}

Irakli Keshelashvili

Experimental Setup Asymmetry Measurements & Target Material Test

Preliminary Results $A_y(\Theta) \quad \vec{d}X \to dX$

Vector Analyzing Power, Deuteron Scattering at 270 MeV

Vector Analyzing Power, Deuteron Scattering at 300 MeV

Irakli Keshelashvili

12

 Θ_{lab} [deg]

Preliminary Results

May 23rd, 2017

Irakli Keshelashvili

Summary

- We had 3 very successful beam times.
 Preparing 4th, end of 2017 ⁽¹⁾
- LYSO-SiPM Excellent Performance
- $\Delta E(x)$ Plastic scintillator modules are under development...

JFD

- New 24 modules will be assembled and tested in 2017 in total 48 (4x12) Modules
- Now we have universal external beam experimental setup with various measurement possibilities.

Appendix

May 23rd, 2017

Irakli Keshelashvili

Acknowledgment People contributing to the experiment

- PhD: F. Müller, S. Basile, & D. Shergelashvili
- Mechanics: N. Giese, M. Maubach, G. D'Orsaneo & D. Spölgen
- Electronics: Tanja Hahnraths-von der Gracht & T. Sefzick
- DAQ & FEE: D. Mchedlishvili, L. Barion & P. Wüstner
- G4: G. Macharashvili, P. Maanen & N. Lomidze
- Ms & Bs: O. Javakhishvili, M. Gagoshidze

EDM – <u>Precision Experiment !!!</u>

- > Reaction with Large A_v : Best $dC \rightarrow dC$!!!
- Maximum Detection & Data Taking Efficiency !!!
- > Full ϕ in Reasonable FOM(θ) region !!!
- > No Magnetic / Electric Field !!!
- Stability Long / Short Term !!!

JuDiT Jülich ballistic Diamond pellet Target

- Target capable to measure polarization profile
- Huge dynamic range in effective target thickness
- Non-invasive, no rest gas

First Saturation Test December 2016 Beam Time

May 23rd, 2017

Irakli Keshelashvili

Online Monitoring December 2016 Beam Time

May 23rd, 2017

Irakli Keshelashvili

Slow Control System December 2016 Beam Time

Irakli Keshelashvili

Collimator System December 2016 Beam Time

Preliminary results at 150 MeV December 2016 Beam Time

Measurement on CH₂ Polyethylene target

Preliminary results December 2016 Beam Time

Measurement on CH₂ Polyethylene target

May 23rd, 2017

Member of the Helmholtz-Association

Irakli Keshelashvili

Target System + Start Counter December 2016 Beam Time

Irakli Keshelashvili

Online Analysis Software December 2016 Beam Time

DAQ Signal shapes Struck FADC: 14 bit, 250 MS/s, 200 samples

May 23rd, 2017

Irakli Keshelashvili