Detector challenges for future high-energy e^+e^- colliders

Eva Sicking (CERN)

Technology and Instrumentation in Particle Physics Conference 2017

Beijing, China - May 22, 2017

Introduction

Hadron vs. lepton colliders

- 1) Proton is compound object
 - Initial state unknown
 - Limits achievable precision
- 2) High rates of QCD backgrounds
 - Complex triggers
 - High levels of radiation
- 3) Very high-energy circular colliders feasible

- 1) e^+e^- are point-like
 - Initial state well-defined (energy, opt.: polarisation)
 - High-precision measurements
- 2) Clean experimental environment
 - Less/no need for triggers
 - Lower radiation levels
- 3) Very high energies require linear colliders

pp vs. e^+e^- cross sections

Circular vs. linear e⁺e⁻ colliders

• Circular colliders (CC)

- Can accelerate beam in many turns
- Can collide beam many times
- Possibility of several interaction regions
- Limited energy due to synchrotron radiation
 - Synchrotron radiation per turn ~ Energy⁴/(Mass⁴ · Radius)
 - Mass_{proton} / Mass_{electron} ≈ 2000
 - E.g. 2.75 GeV/turn lost at LEP for E = 105 GeV

accelerating cavities

• Linear colliders (LC)

- Very little synchrotron radiation in a linac
- Can reach high energies
- Have to achieve energy in a single pass
 - \rightarrow High acceleration gradients needed
- One interaction region
- Have to achieve luminosity in single pass
 - \rightarrow Small beam size and high beam power
 - \rightarrow Beamstrahlung, energy spread

e⁺e⁻collider proposals

High-energy e⁺e⁻ collider proposals

Circular Electron Positron Collider (CEPC)

Future Circular Collider (FCC) e^+e^+ , $\sqrt{s} = 90-350 \text{ GeV}$;

pp, \sqrt{s} :~100 TeV Circumference: 90-100 km

e⁺e⁻collider proposals

High-energy e⁺e⁻ collider proposals

Status of projects

ILC:

- TDR/DBD in 2013;
 - European XFEL in operation using similar accelerator technology;
- CLIC: CDR in 2012;
 - Staging baseline document in 2016;
 - Project Implementation Plan planned for 2018;
- CEPC:
- pre-CDR in 2015;CDR planned for 2017;
- FCC-ee: CDR planned for 2018;

TDR: Technical design report DBD: Detailed Baseline Design CDR: Conceptual design report

XFEL operation since Dec. 2016

CLIC two beam test stand

Experimental conditions in linear and circular colliders \rightarrow Impact on detector design

Difference between pp and e⁺e⁻ environment

- Detectors for hadron colliders
 - Large QCD backgrounds
 - Focus on radiation hardness of many sub-detectors
- $\bullet\,$ Detectors for e^+e^- colliders
 - Cleaner e⁺e⁻ collisions
 - Beam-induced backgrounds dominating source of radiation damage
 - Hadronic radiation damage only relevant in very forward detectors ($\theta \sim 10\,mrad$ 38 mrad)

Beam-induced backgrounds

• Linear collider: Achieve high luminosities by using extremly small beam sizes \rightarrow 3 TeV CLIC: Bunch size: $\sigma_{x;y;z} = \{40 \text{ nm}; 1 \text{ nm}; 44 \mu\text{m}\} \rightarrow \text{beam-beam interactions}$

Main backgrounds ($p_T > 20 \text{ MeV}, \theta > 7.3^\circ$)

- Incoherent e⁺e⁻ pairs:
 - 19k particles / bunch train at 3 TeV
 - High occupancies
 - \rightarrow Impact on detector granularity
- $\gamma\gamma \rightarrow hadrons$
 - $\bullet~$ 17k particles / bunch train at 3 TeV
 - Main background in calorimeters and trackers
 - \rightarrow Impact on detector granularity and physics

- Circular colliders: Same processes + synchroton radiation
- Background yields depend strongly on beam energy ightarrow currently under study

Eva Sicking (CERN)

Duty cycle and bunch separation in linear colliders

- Linear colliders operate in bunch trains
 - \rightarrow Low duty cycle

-

- \rightarrow Possibility of power pulsing of detectors
- Bunch separation impacts on detector design

Property	ILC		CLIC	
\sqrt{s}	500 GeV	1 TeV	380 GeV	3 TeV
Repetition rate	5 Hz	4 Hz	50 Hz	50 Hz
Train duration	727 μs	897 μs	178 ns	156 ns
BX / train	1312	2450	356	312
Bunch separation	554 ns	366 ns	0.5 ns	0.5 ns
Duty cycle	0.36%	0.36%	0.00089%	0.00078%

High luminosities in circular colliders

Property	Unit	FCC-ee (100 km)			CEPC (54km)	
Beam energy	GeV	45.6	80	120	175	120
Luminosity/IP	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	90	19	5.1	1.3	2.0
Bunches / beam	91500	5260	780	81	50	
Bunch separation	ns	2.5	50	400	4000	-

FCC-ee beam pipe proposal

- Large number of bunches
- Consequences for detector design
 - Crossing angle of $\theta_c = 30 \, \text{mrad}^{\dagger}$ to avoid parasitic collisions
 - Bunch separation impacts on detector design
 - No power pulsing of detectors

[†]CLIC: $\theta_c = 20 \text{ mrad}$

Detector challenges for high-energy e+ecolliders

Machine-detector interface in circular colliders

- High luminosities: last focusing quadrupole "QD0" very close to IP:
 - L*≈2.2 m @ FCC-ee
 - L*≈1.5 m @ CEPC
- $\bullet~$ Protect QD0 from main magnetic field \rightarrow Screening solenoid around QD0
- Compensating solenoid to prevent emittance blow-up due to non-zero crossing angle

Example: FCC-ee

- $\rightarrow \mbox{ Limits magnetic field of main solenoid to } B{=}2\,\mbox{T}$
 - → Need to increase tracker radius to maintain momentum resolution

Top view on forward detector region: FCC-ee

Experimental conditions

Synchrotron radiation in circular colliders

- Synchrotron radiation from bending high-energy electron beam on circular trajectory

Property	Unit	FCC-ee (100 km)			CEPC (54 km)	
Energy/beam	GeV	45.6	80	120	175	120
Energy loss / turn	GeV	0.03	0.33	1.67	7.55	3.11

Synchrotron radiation in circular colliders: Shielding

• Close to the detector region, additional **shielding** to prevent synchrotron radiation/secondary radiation to enter the detector

 $\bullet\,$ Cooling of beam pipe needed \rightarrow increased material budget at the IP

Central detector Luminometer QD0 HOM absorber Pumps SR shielding

Synchrotron radiation in circular colliders: Shielding

• Close to the detector region, additional **shielding** to prevent synchrotron radiation/secondary radiation to enter the detector

Central detector Luminometer QD0 HOM absorber Pumps SR shielding

 $\bullet\,$ Cooling of beam pipe needed \rightarrow increased material budget at the IP

Physics programme → Detector requirements

Energy reach \rightarrow physics programmes

• Physics programmes focus on precision measurements of

- FCC-ee: Z, W, Higgs, top
- CEPC: Higgs (Z, W under discussion)
- ILC: Higgs, top, direct high-mass BSM searches
- CLIC: Higgs, top, direct high-mass BSM searches

Linear collider detector needs

- Momentum resolution
 - Higgs recoil mass, smuon endpoint, Higgs coupling to muons
 - $ightarrow~\sigma_{
 ho_{\mathsf{T}}}/p_{\mathsf{T}}^2\sim 2 imes 10^{-5} {\mathsf{GeV}}^{-1}$ above 100 GeV
- Impact parameter resolution
 - c/b-tagging, Higgs branching ratios
 - $\rightarrow \sigma_{r\varphi} \sim a \oplus b/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu m$
 - $a = 5 \,\mu\text{m}, \ b = 10 15 \,\mu\text{m}$
- Jet energy resolution
 - Separation of W/Z/H di-jets
 - $ightarrow~\sigma_{\it E}/\it E\sim 3.5\%$ for jets at 50-1000 GeV
- Angular coverage
 - Very forward electron and photon tagging
 - \rightarrow Down to $\theta = 10 \text{ mrad} (\eta = 5.3)$
- Requirements from beam structure and beam-induced background
- $\rightarrow\,$ Note: Ongoing study to re-define needs for precision measurements

Circular collider detector needs

Eva Sicking (CERN)

Detector concepts

Detector concepts

Multi-purpose detectors for e⁺e⁻ colliders

- No large QCD backgrounds in e⁺e⁻ collisions
 - Radiation hardness mainly for very forward direction
- Precision physics programme for e⁺e⁻ colliders
 - Requires excellent flavour tagging and momentum resolution
 - Light-weight vertex and tracker detector, highly granular
 - Requires excellent energy resolution
 - Use excellent calorimeters, for instance based on particle flow

• Multi-purpose detectors

\rightarrow Onion-like arrangement of complementary sub-detectors

- Vertex detector
- \rightarrow measure track of charged particles
- \rightarrow measure vertex position
- \rightarrow measure impact parameter \rightarrow flavour
- Tracking detector El.-mag. calorimeter
- Hadronic calorimeter
- Magnet system
- Muon system
- Hermiticity

- \rightarrow measure track of charged particles
- \rightarrow measure energy of γ , e[±] and hadrons
- \rightarrow measure full energy of hadrons
- \rightarrow bend charged particles \rightarrow momentum
- \rightarrow identify muons
- \rightarrow measure missing energy (e.g. v)

SiD detector @ ILC

- SiD: "Silicon Detector"
- B-field of 5 T
- All-silicon vertex detector + tracker
- Fine-grained calorimetry
 → Particle Flow Analysis
- Compact design (\sim 1.2 m tracker radius)

ILD detector @ ILC

- ILD: "International Large Detector"
- Silicon vertex detector
- Time Projection Chamber as tracker surrounded by Silicon Envelope
- Fine-grained calorimetry (PFA)
- Re-optimisation: Large (L) and small (S) options under study

-	c · ·		10		10.13
Eva	SIC	king	ι.	EВ	KIN.

ILD		7833 4673 4340 2028 1808 330	Yoke/ Muon Coil HCAL ECAL TPC Vertex IP
	ILD-L (DBD)	ILD-S	
B-field TPC outer radius Coil inner radius	3.5 T 180 cm 344 cm	4 T 146 cm 310 cm	
energy e ⁺ e ⁻ colliders		May 22, 2017	23 / 5

CLIC detector: CLICdet

- SiD/ILD-inspired detector concept
 - B-field of 4 T
 - Large silicon tracker R=1.5 m
 - QD0 outside detector
 - \rightarrow increase HCAL forward acceptance

Towards FCC-ee detectors (option I)

- CLICdet-inspired detector concept
 - Complex forward region
 - \rightarrow smaller magnetic field of B=2 T
 - \rightarrow larger tracker radius (keep similar momentum resolution)
 - HCAL less deep ightarrow lower \sqrt{s}
 - Vertex detector endcap without spirals (no air cooling)

- To be further optimised for different
 - Physics goals
 - Backgrounds
 - Detector cooling requirements

Towards FCC-ee detectors (option I)

- CLICdet-inspired detector concept
 - Complex forward region
 - \rightarrow smaller magnetic field of B=2 T
 - \rightarrow larger tracker radius (keep similar momentum resolution)
 - HCAL less deep ightarrow lower \sqrt{s}
 - Vertex detector endcap without spirals (no air cooling)

- To be further optimised for different
 - Physics goals
 - Backgrounds
 - Detector cooling requirements

Towards CEPC detectors (option I)

- Shorter L* of 1.5 m \rightarrow QD0 inside tracker
- Increased cooling infrastructure due to continuous operation
- Thickness of return yoke reduced for both barrel and endcap

Towards CDR:

- Study 2+ detector concepts
- ILD-like / SiD-like concepts, novel concept (→ "IDEA")

- More than $3\sigma \pi/k$ separation over a wide momentum range
- Very good b and c tagging

Detector R&D

Disclaimer:

- Showing only examples of recent developments here
- More details and results in parallel session talks

Vertex and tracking detectors

Challenges in vertex detector R&D

- Flavour tagging capabilities drive the design of the vertex detector
 - \rightarrow Extremely accurate
 - \rightarrow Extremely light

SiD vertex detector

• LC vertex-detector challenges

- $\bullet \ \sim 1 \, \text{m}^2 \, \, \text{surface}$
- Single point resolution of $\sigma < 3-5\,\mu m$
 - $\rightarrow~$ Pixel pitch $\approx 17-25\,\mu m$
- Low power dissipation of $\leq 50\,mW/cm^2$
- Material budget $< 0.1 0.3 \,\% X_0$ per layer
 - $\rightarrow\,$ Thin sensors and ASICs, low-mass support, power pulsing, air cooling

Time stamping

- $\rightarrow \sim 10 \text{ ns}$ (CLIC)
- $\rightarrow \sim 300\,\text{ns}-\mu\text{s}$ dep. on technology (ILC)
- CC vertex detectors: Differences
 - Continuous operation → increased cooling
 → increased material budget

Challenges in tracking detector R&D

- Very good momentum resolution
- Different concepts, each with large $B \cdot R^2$
 - SiD and CLICdet: all silicon tracker
 - ILD and IDEA: silicon + gaseous tracking

- 1) Silicon tracker challenges
 - Large surface area of O(100 m²)
 - → Use integrated sensors w. large pixels/strips ($\sim 30 \,\mu\text{m} \times 1 - 10 \,\text{mm}$)
 - Maintain efficiency and good timing despite large pixel area
 - Mechanical stiffness vs. very little material budget
 - \rightarrow Light-weight support structure and cooling concepts
- 2) TPC challenges
 - Ion back flow impacts on resolution
 - \rightarrow Gating concepts under study
 - Hit timing and momentum resolution
 - \rightarrow Silicon envelope around TPC
 - Occupancies
 - \rightarrow Meets requirements for ILC
 - \rightarrow Under study for CEPC

Silicon pixel-detector technologies

Technology	Examples
Hybrid	CLICpix ASIC+planar sensor,
	HV-CMOS hybrid
Integrated sensor/amplif. + separate r/o	DEPFET, FPCCD
3D integrated	Tezzaron, SOI
Monolithic CMOS	Mimosa CPS, HV-CMOS, HR-CMOS

Hybrid: Extremely thin sensors

$700\,\mu m$ Timepix ASIC + $50\,\mu m$ sensor

- Classical approach used in LHC pixel detectors
 - Independent optimisation of r/o ASIC and sensor
 - e⁺e⁻ application: Combine ultra-thin sensors with high-performance r/o ASICs
 - Requires bump bonding

• Performance of ultra thin sensors

- Timepix/Timepix3 ASICs, $55 \mu m$ pitch
- $\bullet~$ Planar sensors with $50-500\,\mu m$ thickness
- CLIC Timepix3 telescope for reference, 2μm track resolution
- Resolution limited by single-pixel clusters
- Charge sharing is lower in thin sensors
- Reduced resolution for thin sensors

Hybrid: Extremely thin sensors

$700\,\mu m$ Timepix ASIC + $50\,\mu m$ sensor

- Classical approach used in LHC pixel detectors
 - Independent optimisation of r/o ASIC and sensor
 - e⁺e⁻ application: Combine ultra-thin sensors with high-performance r/o ASICs
 - Requires bump bonding

• Performance of ultra thin sensors

- Timepix/Timepix3 ASICs, 55 µm pitch
- $\bullet~$ Planar sensors with $50-500\,\mu m$ thickness
- CLIC Timepix3 telescope for reference, 2μm track resolution
- Resolution limited by single-pixel clusters
- Charge sharing is lower in thin sensors
- Reduced resolution for thin sensors

Hybrid: Capacitive Coupled Pixel Detector (CCPD)

CLICpix ASIC + CCPDv3

Check alignment

- HV-CMOS chip as integrated sensor+amplifier
- Capacitive coupling to r/o ASIC through layer of glue \rightarrow no bump bonding
- CCPDv3 test sensor for ATLAS and CLIC
- Proof-of-principle test-beam measurements, e.g. using CLICpix r/o ASIC (25 μm pitch)

Efficiency versus bias voltage

Eva Sicking (CERN)

Hybrid: Capacitive Coupled Pixel Detector (CCPD)

CLICpix ASIC + CCPDv3

Check alignment

- HV-CMOS chip as integrated sensor+amplifier
- Capacitive coupling to r/o ASIC through layer of glue \rightarrow no bump bonding
- CCPDv3 test sensor for ATLAS and CLIC
- Proof-of-principle test-beam measurements, e.g. using CLICpix r/o ASIC (25 μm pitch)

Efficiency versus bias voltage

Eva Sicking (CERN)

Semi-integrated technology: FPCCD

- "Fine Pixel Charge-Coupled Device" studied for ILD vertex detector
- Semi-integrated technology (separate r/o ASICs)
- Thickness of 50 µm, but material pushed to endcaps
- Trade-off:
 - Pixel pitch down to $5\,\mu m$ $\rightarrow 1.4\,\mu m$ res. for single pixel hits
 - Integrate over full ILC bunch trains
 → no time stamps
 - Background rejection by pattern recognition
- Operation at -40°C in cryostat using CO₂ cooling Cryostat design

FPCCD prototype Pixel pitch 6, 12, 18, 24 μm $6 \times 6 \, mm^2$

$12 \times 62 \,\text{mm}^2$ (real size sensor)

3D integrated: Silicon on Insulator (SOI)

- Monolithic pixel detectors in SOI
- SOI R&D ongoing for CEPC, ILC and CLIC
 - Thin SOI CMOS (200 nm feature size) and thick sensor bulk
 - High-resistive fully depleted sensor
 → Large S/N and high speed
 - Pixel pitch down to $10\,\mu m$
 - Thickness down to 50 μm

"SOI sens. for Fine meas. of Space & Time" SOFIST 25 µm-pitch test chip (KEK)

AGH SOI 30 µm-pitch sensor: resolution

3D integrated: Silicon on Insulator (SOI)

- Monolithic pixel detectors in SOI
- SOI R&D ongoing for CEPC, ILC and CLIC
 - Thin SOI CMOS (200 nm feature size)

Talks by Marco Meschini (Wed.), Yunpeng Lu (Thu.), Kazuhiko Hara (Thu.), Shun Ono (Thu.)

- \rightarrow Large S/N and high speed
- $\bullet~$ Pixel pitch down to $10\,\mu m$
- Thickness down to $50\,\mu m$

"SOI sens. for Fine meas. of Space & Time" SOFIST 25 µm-pitch test chip (KEK)

AGH SOI 30 µm-pitch sensor: resolution

Monolithic Active Pixel Sensor (MAPS)

- Fully integrated CMOS technology
- Early generations
 - Charge collection mainly diffusion, timing limited by rolling-shutter r/o (μs)
- Recent advances
 - Moving towards smaller feature size (180 nm, Tower Jazz) and higher-resistivity substrates (few kOhm cm) → HR-CMOS
 - Promising timing performance
- Successfully deployed in HEP, with increasingly demanding requirements:
 - Test-beam telescopes
 - STAR @ RHIC
 - CBM MVD @ FAIR
 - ALICE ITS upgrade
 - Baseline technology for ILD VTX, under study for CEPC and CLIC

ALICE ITS upgrade

ALICE HR-CMOS investigator

Monolithic Active Pixel Sensor (MAPS)

- Fully integrated CMOS technology
- Early generations
 - Charge collection mainly diffusion, timing limited by rolling-shutter r/o (μs)
- Recent advances
 - Moving towards smaller feature size (180 nm, Tower Jazz) and higher-resistivity substrates (few kOhm cm) → HR-CMOS
 - Promising timing performance
- Successfully deployed in HEP, with increasingly demanding requirements:
 - Test-beam telescopes
 - STAR @ RHIC
 - CBM MVD @ FAIR
 - ALICE ITS upgrade
 - Baseline technology for ILD VTX, under study for CEPC and CLIC

ALICE ITS upgrade

ALICE HR-CMOS investigator

Monolithic Active Pixel Sensor (MAPS)

- Fully integrated CMOS technology
- Early generations
 - Charge collection mainly diffusion, timing limited by rolling-shutter r/o (μs)
- Recent advances
 - Moving towards smaller feature size (180 nm, Tower Jazz) and higher-resistivity substrates (few kOhm cm) → HR-CMOS
 - Promising timing performance
- Successfully deployed in HEP, with increasingly demanding requirements:
 - Test-beam telescopes
 - STAR @ RHIC
 - CBM MVD @ FAIR
 - ALICE ITS upgrade
 - Baseline technology for ILD VTX, under study for CEPC and CLIC

ALICE ITS upgrade

ALICE HR-CMOS investigator

Example: cooling and power pulsing

Vertex detector with low material budget

- Micro-channel cooling
 - Low volumetric flow (11/h) and low pressure (< 1 bar) enough to dissipate the heat in the front end
- Air cooling
 - Heat load of 13 50 mW/cm² extractable using air flow
- Power pulsing
 - Small duty cycles → turn off front end in gaps between bunch trains

Test setup for power pulsing

DEPFET Micro-channel cooling

ILD FTD temperature meas. in wind tunnel

Cooling using air flow: 1:1 scale mock-up

Example: Light support structures

- Low material budget requirements
 → light-weight support
- Synergies with LHC experiment upgrades

Plume ladder equipped with CPS

ILD FTD mock-up carbon-fiber + CF tubes + 3D printed joints

SiD tracker support prototype based on CFRP box channels

CLIC vertex det. support prototype carbon fibre + honeycomb core

ALICE ITS outer barrel stave

Eva Sicking (CERN)

Detector challenges for high-energy e⁺e⁻ colliders

Time Projection Chamber

Time projection chamber

- TPC as tracker studied for ILD, CEPC
- ullet ~ 200 space points along the track
- dE/dx measurement for PID
- Challenges under study
 - Hit timing and momentum resolution, ion back flow, occupancy
- Readout: Micro-pattern gas detectors
 - Double/Triple GEM
 - Resistive micromegas
 - Integrated pixel read-out

Large TPC prototype

GEM and Micromegas readout

Time Projection Chamber

Time projection chamber

- TPC as tracker studied for ILD, CEPC
- ullet ~ 200 space points along the track
- dE/dx measurement for PID
- Challenges under study
 - Hit timing and momentum resolution, ion back flow, occupancy
- Readout: Micro-pattern gas detectors
 - Double/Triple GEM
 - Resistive micromegas
 - Integrated pixel read-out

Large TPC prototype

GEM and Micromegas readout

Talk by Huirong Qi (Thu.)

Calorimetry

Particle flow calorimeters

Pursued for ILC, CLIC, CEPC and FCC-ee

3%–4% jet energy resolution reachable with Particle Flow Analysis (PFA)

Idea:

- Average jet composition
 - 60% charged particles 30% photons 10% neutral hadrons
- Always use the best information
 - $60\% \rightarrow \text{tracker} \stackrel{\textcircled{\sc l}}{\odot} 30\% \rightarrow \text{ECAL} \stackrel{\textcircled{\sc l}}{\odot} 10\% \rightarrow \text{HCAL} \stackrel{\textcircled{\sc l}}{\odot}$

Particle flow calorimeters

Pursued for ILC, CLIC, CEPC and FCC-ee

3%-4% jet energy resolution reachable with Particle Flow Analysis (PFA)

Idea:

- Average jet composition
 - 60% charged particles 30% photons 10% neutral hadrons
- Always use the best information
 - $60\% \rightarrow \text{tracker} \stackrel{\textcircled{\baselineskip}{\label{eq:constraint}} 30\% \rightarrow \text{ECAL} \stackrel{\textcircled{\baselineskip}{\label{eq:constraint}} 10\% \rightarrow \text{HCAL} \stackrel{\textcircled{\baselineskip}{\label{eq:constraint}} 30\% \rightarrow \text{CAL}$

Particle Flow Analysis: Hardware + Software

 Hardware: Resolve energy deposits from different particles
 → High granularity calorimeters

 $E_{jet} = E_{ECAL} + E_{HCAL}$

• Software: Identify energy deposits from each individual particle

Particle flow calorimeters

Pursued for ILC, CLIC, CEPC and FCC-ee

3%–4% jet energy resolution reachable with Particle Flow Analysis (PFA)

Idea:

Particle Flow Analysis: Hardware + Software

Hardware: Resolve energy deposits Average jet composition from different particles 60% charged particles \rightarrow High granularity calorimeters 30% photons 10% neutral hadrons Always use the best information • $60\% \rightarrow \text{tracker}$ $30\% \rightarrow ECAL$ $E_{\text{iet}} = E_{\text{ECAL}} + E_{\text{HCAL}}$ ALICE: Yota Kawamura (Tues.), Hongkai Wang (Tue.) .: Identify energy deposits CALICE: Yong Liu (Tue.), Boruo Xu (Tue.), Burak Bilki (Thu.), Imad Laktineh (Thu.) \rightarrow Sophisticated reco. software CEPC: Zhigang Wang (poster) π^+ CMS HGCal: Florian Pitters (Tue.), Francesco Romeo (Tue.), Johan Borg (Thu.) FCC-hh: Coralie Neubüser (Wed.) Front-end electronics: Christophe De La Taille (Wed.) $E_{iet} = E_{track} + E_{y}$ Eva Sicking (CERN) May 22, 2017 42 / 51

Detector challenges for high-energy e⁺e⁻ colliders

Calorimetry: Active layer technology: Examples

Silicon PIN diodes ($1 \times 1 \text{ cm}^2$ in 6×6 matrices) Scintillator tiles/strips (here $3 \times 3 \text{ cm}^2$) + SiPMs

Resistive place chambers (1 × 1 cm² signal pads) Signal pads Mylar Resistive paint 1.2mm gas gap Resistive paint Mylar Resistive paint Mylar

CALICE

CALICE test beam experiment: Examples

CALICO

- Test beam experiments in 2006-2015 at DESY, CERN, FNAL
- $\bullet\,$ First physics prototypes of up to ${\sim}1\,m^3$, ${\sim}2\,m^3$ including Tail Catcher Muon Tracker

AHCAL/Si-ECAL: $\sim 10\,000$ readout channels

DHCAL: $\sim 500\,000$ readout channels

- Detector challenges:
 - Compact design of calorimeters
 - Calibration of all channels

Eva Sicking (CERN)

CALICE event displays

• Trade-off between energy resolution and granularity

Analogue HCAL

CALICE W-AHCAL Y Z 80 GeV pion

 3 × 3 cm² cells, analogue energy information per cell • 1 × 1 cm² cells, count cells above one energy threshold

 $^\dagger\,\text{hits}$ from identified tracks within shower

 1 × 1 cm² cells, count cells above three energy thresholds

CALICE example results

Time structure: W vs. Fe HCAL

Shower sub-structure: N_{tracks} in Si-W-ECAL

20

40 50 60 70 80

SiD Si-W ECAL

Si-W-ECAL schematics

- Highly-granular calorimeter development: Si-W-ECAL for SiD@ILC
- Status: establish scalability
 - Embedded electronics for compact detector: here kPix
 - Demonstrate feasibility of construction of compact calorimeter

Forward CALorimetry: FCAL

- Very forward e.m. calorimeters
 - LumiCal for luminosity measurement (< ±1% accuracy)
 - BeamCal for very forward electron tagging
- e^- and γ acceptance to small angles
- Very compact design (sensors, read-out, absorber) → small Molière radius
- BeamCal: GaAs, LumiCal: silicon

LumiCal module with Si sensor (one sector)

ILD@ILC forward region

Stack used in test beam

- e⁺e⁻ colliders are precision machines with a large physics potential
- Existence of many e^+e^- collider studies shows world-wide interest in e^+e^- physics
- Interest increased since Higgs discovery at the LHC
- Detailed studies on e^+e^- detector concepts
 - Demanding requirements and ambitious concepts
 - Requirements depend on physics goals and experimental conditions
 - Large synergies between collider projects and already approved experiments
 - Active detector collaborations and R&D spin-offs

- e⁺e⁻ colliders are precision machines with a large physics potential
- Existence of many e^+e^- collider studies shows world-wide interest in e^+e^- physics
- Interest increased since Higgs discovery at the LHC
- Detailed studies on e^+e^- detector concepts
 - Demanding requirements and ambitious concepts
 - Requirements depend on physics goals and experimental conditions
 - Large synergies between collider projects and already approved experiments
 - Active detector collaborations and R&D spin-offs

Thanks to all who provided material for this talk:

Sources used in this presentation

Beam strahlung and luminosity spectrum

- LCs achieve high luminosity via small beam size → leads to beamstrahlung
- Energy loss reduces collision energy
- 1% most energetic part
 - $\bullet~\sim$ 60% at 500 GeV and 1 TeV ILC
 - \sim 60% at 380 GeV CLIC
 - $\bullet~\sim$ 35% at 3TeV CLIC

- Most physics processes are studied well above production threshold
- Can profit from almost full luminosity also at LCs

ILC detectors - Push-pull

- Only one interaction point at a linear collider
- Plan to exchange ILD and SiD regularly for data taking
- Movable platforms, keeping all services connected
- Fast alignment

Calorimeter optimised for particle flow

Pursued for ILC, CLIC, CEPC and FCC-ee

- Jet energy resolution (JER) requirements depend on physics goals
- Starting point for LC detector design
 - \rightarrow Ability to separate hadronic W and Z decays

100

120 m_{ii}/GeV

Calorimeter optimised for particle flow

Pursued for ILC, CLIC, CEPC and FCC-ee

- Jet energy resolution (JER) requirements depend on physics goals
- Starting point for LC detector design

 $\bullet~3\%\text{--}4\%$ jet energy resolution gives $\sim 2.6-2.3\sigma~W/Z$ separation

Eva Sicking (CERN)

Optimise calorimeter for particle flow

 \rightarrow Reco. details next slide

- High granularity of calorimeters
 - \rightarrow Separate overlapping showers to reduce confusion

$$\sigma_{\text{jet}} = \sqrt{\sigma_{\text{track}}^2 + \sigma_{\text{el.-m.}}^2 + \sigma_{\text{had.}}^2 + \sigma_{\text{confusion}}^2}$$

- JER of 3%-4% when using
 - $\rightarrow~$ ECAL cell size: $\sim 1 \times 1 \, \text{cm}^2$
 - ightarrow HCAL cell size: $\sim 3 imes 3 \, {
 m cm}^2$

Reconstruction information for cell size optimisation

- HCal timing cuts: 100 ns
- ECal timing cuts: 100 ns
- HCal Hadronic Cell Truncation: Optimised for each detector model
- Software: ilcsoft_v01-17-07, including PandoraPFA v02-00-00
- Digitiser: ILDCaloDigi, realistic ECal and HCal digitisation options enabled
- Calibration: PandoraAnalysis toolkit v01-00-00

More details in LCWS2015 talk by Steven Green