

PandaX-4T Xenon Detector For Rare Physics Search

Ning Zhou (SJTU) On behalf of PandaX Collaboration TIPP2017 2017/05/22-26, Beijing

Outline

- Motivation
- PandaX experiment
- 4-ton LXe detector
 - ТРС
 - Electronics
 - Background control
 - Xenon handling
- Outlook

Motivation

- LXe Detector for measuring rare physics events
- Dark Matter Direction Detection
 - Xenon detectors leading sensitivity for massive DM
 - Cross-check with indirect detection and collider search
- Neutrinoless double beta decay
 - $136 Xe \rightarrow 136 Ba + 2e^{-1}$
 - Majorana neutrino? Anti-matter? Neutrino mass?
- Neutrino detection
 - Neutrino-nucleus coherent
 - Solar ⁸B, DSNB

.s⁻¹.MeV⁻¹.

Neutrino Flux [cm⁻².

10⁻⁰⁴

10

Neutrino Energy [MeV]

100

1000

PandaX Experiment

- Particle and Astrophysical Xenon Experiments
 Formed in 2009, ~50 people
- PandaX-II 500kg results published at PRL
 - World-leading sensitivity in 2016
- Plan to build a 4-ton Xenon detector
 - $-\,$ to push the DM SI sensitivity down to $10^{\text{-}47}\,\text{cm}^2$

Detector Principle

- Double phase Xenon Time Projection Chamber
 - Mature technique
 - Sensitive to massive DM candidate
 - Self-shielding property
 - Signal/background discrimination

- Dark matter detection in Xenon detector
 - Incoming DM collide with Xenon atom
 - Two signatures
 - S1: scintillation light in LXe upon scattering
 - S2: scintillation light in GXe due to ionization electron
 - Reconstruct the collision energy and 3-D position

China Jinping Underground Laboratory

 10^{6}

105

600m

美国

 10^{1}

- Deepest in the world (1μ /week/m²)
- Horizontal access!

2400

CJPL

~8750

PandaX Experiment Space at CJPL-II

- Height 14m
- Width 14m
- Length 65m
- Water tank, depth of 13m

Storage platform

Crane rail Rn free clean room room

10000 class clean room

Semi clean room

Water tank

Overview of PandaX-4ton experiment

Large Scale TPC

- Drift region: Φ ~1.2m, H ~1.2m
 - Xenon in sensitive region \sim 4ton
- Design goal:
 - High signal efficiency
 - Large and uniform electric field
 - Veto ability

Signal Collection Efficiency

- In PandaX-II, photon detection efficiency reaches 11.76%
- PMT: Hamamatsu R11410 with QE > 30%

- Light collection efficiency: ~40%High reflectivity of PTFE (full coverage): >98%
 - PMT dense array: 169 in circular array and 199 in hexagonal array

Electric Field

- Large and uniform electric field
 - To ensure ER/NR separation, energy and position resolution, signal efficiency, etc

Electric Field (V/cm)	Drift (LXe)	Extraction (GXe)
Xenon100	530	12000
LUX	50-600	3000
PandaX-II	400	6000
PandaX-4ton	400	6000

- Four electrodes: drift and extraction
 - Anode, grid, cathode and screen
- Shaping rings:
 - 60 sets to maintain upward field at the edge

Electrodes and Shaping Rings

- Electrodes:
 - Diameter of 1.2 m: mesh and/or wire
 - High light transparency ~ 90%
 - Sustain high voltage of 55 kV
 - Small deformation ~1mm
- Shaping rings:

Deformation of electric field < 1%

Veto System

- Xenon in skin area: 1 ton
- Suppress gamma background
 - Compton scattering in skin area
 - Veto efficiency 50% (50keV_{ee})
- 1" PMT:
 - 72 top and 72 bottom

Electronics

- More channels
 - 512 channels (including 3" PMT and 1" veto PMT)
- Lower threshold
 - Trigger-less data-taking
 - Multi-channel PMT readout

Background Control

- Germanium (Ge) detector and ICPMS
 - Measure the material radioactivity
 - Select pure materials for detector construction
- Inner and outer vessels
 - Stainless steel with the lowest radioactivity
 - Pure copper
- PTFE
 - ²³⁸U, ²³²Th < 0.5 mBq/kg</p>

15

⁸⁵Kr Measurement and Rectification System

- ⁸⁵Kr could be a major background
- Rectifying tower at CJPL
 - ⁸⁵Kr 1ppb -> 1ppt for 5kg/hour
 - Secondary rectification -> 0.1 ppt
- ⁸⁵Kr measurement system
 - To reach a sensitivity of 0.1-0.01 ppt

Item	Run 8 (mDRU)	Run 9 (mDRU)
⁸⁵ Kr	11.7	1.19
¹²⁷ Xe	0	0.42
²²² Rn	0.06	0.13
²²⁰ Rn	0.02	0.01
Detector material ER	0.20	0.20
Total	12.0	1.95

16

²²²Rn Control

- ²²²Rn leaked into Xenon
- Current level at PandaX-II: 50µBq/kg
- For PandaX-4T, the goal is to reach 1μ Bq/kg

Fig. 1. Layout of the Xe circulation and Rn concentration measurement system. The charcoal traps are connected at points A and B. The right side of the figure shows th layout of the newly designed charcoal trap for XMASS with the location of its temperature sensors, which was also tested in the left side system.

Rn-free clean room

Xenon Handling: Storage, Cooling and Purification

- Storage: 5-6 ton xenon
 - 6set 4x4 (50kg, 40L)
 - Filling speed: 600 1000kg/day
- Cooling bus: 2 modules
 - modular design at PandaX-II(500kg)

(b) 制冷总线实物装置

- Online purification
 - Remove impurities (O_2 , H_2O)
 - Maintain a high electron life time

Background Level

Background from materials and neutrino

Background for DM search [0, 10 keV _{ee}]	mDRU
Electronic Recoil: materials	0.020
Electronic Recoil: ²²² Rn	0.011 (1 μBq/kg)
Electronic Recoil: ⁸⁵ Kr	0.005 (0.1 ppt)
Electronic Recoil: ¹³⁶ Xe	0.002
Electronic Recoil: Solar Neutrino	0.009
Total Electronic Recoil	0.047
Total Nucleus Recoil	3 x 10 ⁻⁴

Expected Sensitivity

- With exposure reaching 6 ton-year
- DM SI sensitivity could reach ~10⁻⁴⁷cm²

Project Timescale

- 2016: Project R&D started
- 2017-2018: Produce all components and test
- 2019-2020: On-site assembling and commissioning
- 2021-2022: Data-taking

Summary and Outlook

- PandaX experiment with 500kg Xenon has reached the world frontier of dark matter direct detection.
- PandaX-4ton could be a multi-purpose detector for rare signal searches like dark matter, 0vbb and neutrino.
- The new detector is expected to have very high signal collection efficiency, high energy and positron reconstruction resolution and very low background.
- With 8-year's accumulation, PandaX collaboration plan to build the new experiment in the future ~4 years.

Thank you!