Alignment of the CMS Tracker at LHC Run-II
Technology and Instrumentation in Particle Physics
Beijing 2017

Patrick L.S. Connor
on behalf of the CMS collaboration

Deutsches Elektronen-Synchrotron

22 May 2017
1 Introduction
Tracker alignment at CMS
A picture of the challenge
Track-based approach

2 Implementation
Alignables
Weak modes
Time variations

3 Performance
Configuration
Structure of the tracker
Geometry comparison
Validation

4 Summary
References

5 Back-up
Tracker alignment at CMS

Largest silicon tracker in the world!

Purpose: reconstruct trajectories

Until end of 2016:

<table>
<thead>
<tr>
<th></th>
<th>units</th>
<th>hit resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel</td>
<td>1440</td>
<td>9 μm</td>
</tr>
<tr>
<td>strip</td>
<td>15148</td>
<td>20 – 60 μm</td>
</tr>
</tbody>
</table>
Tracker alignment at CMS

Largest silicon tracker in the world!

Purpose: reconstruct trajectories

Until end of 2016:

<table>
<thead>
<tr>
<th></th>
<th>units</th>
<th>hit resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel</td>
<td>1440</td>
<td>9 µm</td>
</tr>
<tr>
<td>strip</td>
<td>15148</td>
<td>20 – 60 µm</td>
</tr>
</tbody>
</table>

Typically, the precision at mounting is such that

\[\sigma_{\text{align}} \gg \sigma_{\text{hit}} \]

Compute a correction to the mounting of the modules such that

\[\sigma_{\text{align}} \approx \sigma_{\text{hit}} \]
A picture of the challenge
A picture of the challenge

- position
A picture of the challenge

- position
- rotation
A picture of the challenge

- position
- rotation
- curvature
A picture of the challenge

- position
- rotation
- curvature

\(\rightarrow O(10^5) \) parameters
A picture of the challenge

- position
- rotation
- curvature

$O(10^5)$ parameters
A picture of the challenge

- position
- rotation
- curvature

\[\longrightarrow O(10^5) \text{ parameters} \]

In addition, tracks are distilled by the misalignment.
Track-based approach

Linearisation of least-square minimisation of the track fit [1, 2]

$$\chi^2(p, q) = \sum_{\text{tracks}} \sum_{\text{hits}} \left(\frac{m_{ij} - f_{ij}(p, q_j)}{\sigma_{ij}} \right)^2$$

- p stands for the alignment parameters and q for the track parameters,
- m stands for the measurements and f for the predictions,
- and σ stands for the uncertainties.

NB: MillePede-II is an project independent from CMS [3].

MillePede-II
- global-fit approach (large linear equation system)
- minimise residuals and refit the tracks together
- take into account all correlations
- demanding in term of memory

HipPy
- local-fit approach
- remove track parameters from the χ^2
- iterative procedure
- used for fine tuning
Track-based approach

Linearisation of least-square minimisation of the track fit [1, 2]

\[
\chi^2(p, q) = \sum_{j} \sum_{i} \left(\frac{m_{ij} - f_{ij}(p, q_j)}{\sigma_{ij}} \right)^2
\]

- \(p\) stands for the alignment parameters and \(q\) for the track parameters,
- \(m\) stands for the measurements and \(f\) for the predictions,
- and \(\sigma\) stands for the uncertainties.

MillePede-II
- global-fit approach (large linear equation system)
- minimise residuals and refit the tracks together
- take into account all correlations
- demanding in term of memory

NB: MillePede-II is an project independent from CMS [3].

HipPy
- local-fit approach
- remove track parameters from the \(\chi^2\)
- iterative procedure
- used for fine tuning
1 Introduction
Tracker alignment at CMS
A picture of the challenge
Track-based approach

2 Implementation
Alignables
Weak modes
Time variations

3 Performance
Configuration
Structure of the tracker
Geometry comparison
Validation

4 Summary
References

5 Back-up
Alignables

- Several levels of alignment:
 - high-level structures \((O(1\, \text{mm}))\)
 \(\rightarrow\) when the statistics is limited
 - modules \((O(10\, \mu\text{m}))\)
 \(\rightarrow\) requires larger statistics
 \(\rightarrow\) *alignables*

- positions, rotations and deformations can be aligned
 \(\rightarrow\) all parameters of alignables can be activated separately

(Sketch of the barrel and forward pixel subdetectors)
Weak modes

Definition
A weak mode is any transformation such that $\Delta \chi^2 \sim 0$.
Weak modes

Definition

A **weak mode** is any transformation such that $\Delta \chi^2 \sim 0$
i.e. it is a transformation that changes *valid* tracks into *other valid* tracks
Weak modes

Definition
A weak mode is any transformation such that $\Delta \chi^2 \sim 0$
i.e. it is a transformation that changes valid tracks into other valid tracks
\rightarrow detector and track topology are symmetric
Weak modes

Definition
A weak mode is any transformation such that $\Delta \chi^2 \sim 0$
i.e. it is a transformation that changes valid tracks into other valid tracks
\rightarrow detector and track topology are symmetric

Examples

Telescope

Twist

(plots from N. Bartosik’s thesis)
Weak modes

Definition

A weak mode is any transformation such that $\Delta \chi^2 \sim 0$

i.e. it is a transformation that changes valid tracks into other valid tracks

\rightarrow detector and track topology are symmetric

Examples

Telescope

Twist

(plots from N. Bartosik’s thesis)

Solution

cosmic rays other topology

$Z \rightarrow \mu\mu$ momentum constraint on the two outgoing muons
Time variations

- Magnet cycles: magnetic field may be switched off for maintenance reasons → mostly affects the large mechanical structures
Time variations

- Magnet cycles: magnetic field may be switched off for maintenance reasons
 \[\rightarrow\] mostly affects the large mechanical structures

- Temperature variations: cooling operations after long shutdown
 \[\rightarrow\] sensitive effect at module level as well
Time variations

- **Magnet cycles:**
 magnetic field may be switched off for maintenance reasons
 → mostly affects the large mechanical structures

- **Temperature variations:**
 cooling operations after long shutdown
 → sensitive effect at module level as well

- **Ageing of the modules:**
 high-radiation environment
 → Lorentz drift inside of the silicon modules
Time variations

- Magnet cycles: magnetic field may be switched off for maintenance reasons → mostly affects the large mechanical structures
- Temperature variations: cooling operations after long shutdown → sensitive effect at module level as well
- Ageing of the modules: high-radiation environment → Lorentz drift inside of the silicon modules

Align separately:
- *absolute* positions of high-level structures with time-dependence;
- *relative* position of modules to the high-level structure without time-dependence.

→ include time dependence but keep large statistics
Introduction
Tracker alignment at CMS
A picture of the challenge
Track-based approach

Implementation
Alignables
Weak modes
Time variations

Performance
Configuration
Structure of the tracker
Geometry comparison
Validation

Summary
References

Back-up
Configuration

We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment
 → possible thanks to high statistics of $Z \rightarrow \mu\mu$ and cosmic rays.
- Determine global alignment with four iterations with MP
 → in case of large corrections, linear approximation of χ^2 is limited.
Configuration

We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment → possible thanks to high statistics of \(Z \rightarrow \mu\mu \) and cosmic rays.
- Determine global alignment with four iterations with MP → in case of large corrections, linear approximation of \(\chi^2 \) is limited.

<table>
<thead>
<tr>
<th>dataset</th>
<th>#tracks</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum-bias tracks</td>
<td>13(M)</td>
<td>0.2 – 0.3</td>
</tr>
<tr>
<td>isolated muons</td>
<td>53(M)</td>
<td>0.25</td>
</tr>
<tr>
<td>(Z \rightarrow \mu\mu)</td>
<td>32(M)</td>
<td>1.0</td>
</tr>
<tr>
<td>cosmic rays</td>
<td>3(M)</td>
<td>2.5</td>
</tr>
</tbody>
</table>

→ large statistics of minimum-bias events is available but limited statistics of cosmic-rays and \(Z \rightarrow \mu\mu \) data
Configuration

We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment
 \rightarrow possible thanks to high statistics of $Z \rightarrow \mu\mu$ and cosmic rays.
- Determine global alignment with four iterations with MP
 \rightarrow in case of large corrections, linear approximation of χ^2 is limited.

<table>
<thead>
<tr>
<th>dataset</th>
<th>#tracks</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum-bias tracks</td>
<td>13M</td>
<td>0.2 – 0.3</td>
</tr>
<tr>
<td>isolated muons</td>
<td>53M</td>
<td>0.25</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>32M</td>
<td>1.0</td>
</tr>
<tr>
<td>cosmic rays</td>
<td>3M</td>
<td>2.5</td>
</tr>
</tbody>
</table>

\rightarrow large statistics of minimum-bias events is available
but limited statistics of cosmic-rays and $Z \rightarrow \mu\mu$ data

- Improve local precision with fifteen iterations with HipPy
 \rightarrow fine tuning.
We present now the performance of the alignment in 2016:

- 36 intervals of time.
- Full module-level alignment
 → possible thanks to high statistics of $Z \rightarrow \mu\mu$ and cosmic rays.
- Determine global alignment with four iterations with MP
 → in case of large corrections, linear approximation of χ^2 is limited.

<table>
<thead>
<tr>
<th>dataset</th>
<th>#tracks</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum-bias tracks</td>
<td>13M</td>
<td>0.2 – 0.3</td>
</tr>
<tr>
<td>isolated muons</td>
<td>53M</td>
<td>0.25</td>
</tr>
<tr>
<td>$Z \rightarrow \mu\mu$</td>
<td>32M</td>
<td>1.0</td>
</tr>
<tr>
<td>cosmic rays</td>
<td>3M</td>
<td>2.5</td>
</tr>
</tbody>
</table>

→ large statistics of minimum-bias events is available
but limited statistics of cosmic-rays and $Z \rightarrow \mu\mu$ data

- Improve local precision with fifteen iterations with HipPy
 → fine tuning.

Note: 150 GB of RAM and around 30 h are needed to run MillePede
Structure of the tracker

- PXB PiXel Barrel
- PXF PiXel Forward
- TIB Tracker Inner Barrel
- TOB Tracker Outer Barrel
- TID Tracker Inner Disks
- TEC Tracker Endcaps
• Each point represents a module; colour is related to the high-level structure.

• One can see the movement $Y(\Delta r, \Delta z, r\Delta \phi)$ of a module initially at position $X(r, z, \phi)$.

→ clear movements between the tracker in data-taking and aligned tracker.
Validation

In the next slides, we show the effect of the alignment on various physical quantities between

- **tracker in data-taking**
- **aligned tracker**

and for reference, we show in addition:

- **MC simulation (no misalignment)**
Distribution of the medians of the residuals

• For each module, the median of the residuals is computed and histogrammed.
• **Optimally aligned detector** has smallest width
 → lower limit on width determined by statistical precision.
• Sensitive to local alignment precision.
Distribution of the medians of the residuals

- For each module, the median of the residuals is computed and histogrammed.
- **Optimally aligned detector** has smallest width
 \[\text{\textarrow{lower limit on width determined by statistical precision}.} \]
- Sensitive to local alignment precision.

\[\text{\textarrow{Improvement} in all parts of the subdetector.} \]
• For each module, the median of the residuals is computed and histogrammed.

• **Optimally aligned detector** has smallest width
 \[\rightarrow \text{lower limit on width determined by statistical precision.} \]

• Sensitive to local alignment precision.
 \[\rightarrow \text{Improvement in all parts of the subdetector.} \]
Ageing of the modules

(From N. Bartosik’s Thesis)

- Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
- E-field and charge carrier mobility change with time.

→ Lorentz drift is not constant in time!
Ageing of the modules

(from N. Bartosik's Thesis)

- Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
- \(E \)-field and charge carrier mobility change with time.
 \[\longrightarrow \text{Lorentz drift is not constant in time!} \]

- Distributions of the median of the residuals can be produced separately for modules with electric field pointing in- or outwards. We show here the difference of the respective means \(\Delta \mu \) over time.
- Ideal tracker would have \(\Delta \mu = 0 \).
Ageing of the modules

(From N. Bartosik’s Thesis)

- Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
- \mathbf{E}-field and charge carrier mobility change with time.

\rightarrow Lorentz drift is not constant in time!

- Distributions of the median of the residuals can be produced separately for modules with electric field pointing in- or outwards. We show here the difference of the respective means $\Delta \mu$ over time.

- Ideal tracker would have $\Delta \mu = 0$.

\rightarrow The difference of the means $\Delta \mu$ in local x direction indicates the recovery of Lorentz-angle effects.
Simultaneous alignment and Lorentz angle calibration in the CMS silicon tracker using Millepede II
Forward PIX Barrel ... Elektronen-Synchrotron, Germany)
on behalf of the CMS Collaboration
EPS HEP 2013 (18-24 July, Stockholm, Sweden)

Structure of
Weak modes
Track-based
CMS
Detectors at LHC.

- Solenoid
- Track-hit residuals d
- We show here the difference of the respective means
- BPIX module: $B = 0T$ field and charge carrier mobility change with time.
- Center of collected charge cluster depends on global module
- Drifting under E field.
- Track induces signal charge during detector operation.
- Largest irradiation dose.
- Closest to the interaction point.
- Impact parameter
- Innermost detector

$\mu = 150V$
$y = 3.8T$
-2600
$\Delta \mu, TID$
$24 244$
$\Delta \mu, TEC$
$24 244$
$23 \mu m$ resolution
600
800
R
$14 000 T$
$15 m$
$10 416$
$10 \mu m$ resolution
$\Delta \mu, TID$
$\Delta \mu, TEC$
$10 \mu m$ resolution
1D
$2D$
$1D$
Primary-vertex validation

- Given N tracks from a vertex, $N - 1$ tracks are used to refit the vertex
 \rightarrow evaluate the distance of the N-th track to the refitted vertex
 $\langle d_{xy} \rangle$ and $\langle d_z \rangle$ as a function of the track ϕ and η.
- Mostly sensitive to movements in pixel subdetector.
- Global patterns suggest systematic misalignments
Primary-vertex validation

Given N tracks from a vertex, $N - 1$ tracks are used to refit the vertex

\rightarrow evaluate the distance of the N-th track to the refitted vertex

$\langle d_{xy} \rangle$ and $\langle d_z \rangle$ as a function of the track ϕ and η.

• Mostly sensitive to movements in pixel subdetector.
• Global patterns suggest systematic misalignments

\rightarrow here, movement in barrel pixel half-shell is cured.
Primary-vertex validation

- Given N tracks from a vertex, $N - 1$ tracks are used to refit the vertex
 \rightarrow evaluate the distance of the N-th track to the refitted vertex $<d_{xy}>$ and $<d_z>$ as a function of the track ϕ and η.
- Mostly sensitive to movements in pixel subdetector.
- Global patterns suggest systematic misalignments
 \rightarrow here, movement in barrel pixel half-shell is cured.
The mass of the Z boson is reconstructed from two outgoing muons.

The mass can be measured as a function of their kinematics — shown here as a function of the azimuthal angle for both muons.
The mass of the Z boson is reconstructed from two outgoing muons.

The mass can be measured as a function of their kinematics shown here as a function of the azimuthal angle for both muons.

→ φ-modulation has been cured.
• The mass of the Z boson is reconstructed from two outgoing muons.
• The mass can be measured as a function of their kinematics → shown here as a function of the azimuthal angle for both muons.

→ ϕ-modulation has been cured.
Summary

- The topic of alignment was introduced:
 - how the **challenge** is addressed at CMS;
- its implementation at CMS was described:
 - how to deal with the **weak modes**
 - and how to include movements over **time**;
- and the performance in 2016 was shown:
 - **most elaborate** alignment campaign of the **largest** silicon tracker with around 100M simultaneously refitted tracks in 36 intervals of time;
 - the alignment **precision** in pixel part of order of 10 μm;
 - and the improvement was presented from various **validations** with data-driven methods.

Thanks a lot!
Summary

- The topic of alignment was introduced:
 - how the **challenge** is addressed at CMS;
- its implementation at CMS was described:
 - how to deal with the **weak modes**
 - and how to include movements over **time**;
- and the performance in 2016 was shown:
 - **most elaborate** alignment campaign of the **largest** silicon tracker with around $100M$ simultaneously refitted tracks in 36 intervals of time;
 - the alignment **precision** in pixel part of order of $10 \, \mu m$;
 - and the improvement was presented from various **validations** with data-driven methods.

Thanks a lot!
References

CMS Collaboration.
Alignment of the cms silicon tracker during commissioning with cosmic rays.
Journal of Instrumentation, 5(03):T03009, 2010.

The CMS collaboration.
Alignment of the cms tracker with lhc and cosmic ray data.

Volker Blobel and Claus Kleinwort.
A new method for the high-precision alignment of track detectors.
Proceedings of the Conference on Advanced Statistical Techniques in Particle Physics, 2002.
• Linearisation of the χ^2 allows to make use of linear algebra:

$$C \times (\Delta p \ \Delta q) = b$$

• Partition of the matrix C into blocks for local and global parameters allows to reduce drastically the size of the matrix to invert:

$$C_j \Delta q_j = b_j \quad \text{local parameters}$$

$$C' \Delta p = b' \quad \text{global parameters}$$

where b' can be determined from Δq_j and C' from C_j^{-1} and some additional blocks in C describing correlations between local and global parameters

• MillePede = Mille + Pede

Mille\hspace{1em}\text{determination of all the values needed to calculate the global } \chi^2 \hspace{1em} \rightarrow p, q, m, \sigma, \text{ local } df/\text{dq and global } df/dp \text{ parameters}

Pede\hspace{1em}\text{determination of local (track) refits to construct the linear equation system, then determination of global (alignment) parameters}
Pixel Barrel Module

Kapton cable (DYCONEX)
- connects module and endprint
- impedance matched (Z~40 Ω)
- glued & wirebonded to HDI

HDI (HIGHTEC MC)
High Density Interconnect Board:
- flexible, low mass PCB
- glued to sensor
- rad hard SMD components
- TMB glued & wirebonded

Power cable (PSI)
- lamination of cable in house
- soldered to HDI

ROC’s (IBM)
Read Out Chip IBM-PSI46:
- 0.25μm DeepSubMicron process
- 52x80 pixels of 150x100 µm > 66 kpixel/module
- power consumption ~28 µW/pixel
- chips thinned to 170 µm
 => reduced MB-contribution

Sensor (CIS)
- 285 µm thickness
- n–on–n devices
- moderated p–spray
- DOFZ–silicon in <111>orientation
- resistivity of 3.7 k Ωm
- processed on both sides

Overall Dimensions:
- Sensor 66.6 x 18.6 mm²
- Baseplate 65 x 26 mm²

Weight:
- Module ~2.2 g
- Cables ~1.3 g

Power consumption:
~2 W per full module

Baseplate
- 250 µm Si–Nitride material
- two small strips glued to ROC’s
 => reduced MB-contribution

Baseplate Strip
DMRs

Principle

The *Distributions of the medians of the residuals* are a measure of the local precision.

- Deviations from 0 indicate possible biases.
- The width is also sensitive to the statistics\(^1\).

Procedure

- Each track is reconstructed for different geometries.
- The hit prediction \(x'_{\text{pred}}\) for each module is obtained from all other track hits. The median of this
- The residuals \(x'_{\text{pred}} - x'_{\text{hit}}\) is histogrammed for each module.
- For each high-level structure, the median of the residuals is histogrammed and plotted.

In order to avoid statistical correlations, we use independent samples for alignment and validation.

\(^1\)In the next plots, we took care of having comparable statistics for MC and data.
DMRs in BPIX

CMS Preliminary 3.8T collision data 2016

Alignment: cosmic rays + collisions

- **Tracker in data taking**: $\mu = -0.004 \, \mu m$, $\sigma = 1.030 \, \mu m$
- **Aligned tracker**: $\mu = 0.048 \, \mu m$, $\sigma = 0.589 \, \mu m$
- **MC (no misalignment)**: $\mu = -0.015 \, \mu m$, $\sigma = 0.205 \, \mu m$

CMS Preliminary 3.8T collision data 2016

Alignment: cosmic rays + collisions

- **Tracker in data taking**: $\mu = -0.396 \, \mu m$, $\sigma = 4.432 \, \mu m$
- **Aligned tracker**: $\mu = 0.006 \, \mu m$, $\sigma = 1.210 \, \mu m$
- **MC (no misalignment)**: $\mu = 0.023 \, \mu m$, $\sigma = 0.567 \, \mu m$
DMRs in FPIX

Alignment: cosmic rays + collisions

- tracker in data taking: $\mu = 0.158 \, \mu m$, $\sigma = 1.784 \, \mu m$
- aligned tracker: $\mu = -0.003 \, \mu m$, $\sigma = 0.911 \, \mu m$
- MC (no misalignment): $\mu = -0.036 \, \mu m$, $\sigma = 0.477 \, \mu m$

- $Z \rightarrow \mu \mu$ validation

- Prompt calibration
DMRs in TIB and TOB

TIB

TOB

CMS Preliminary

3.8T collision data 2016

Alignment: cosmic rays + collisions

- tracker in data taking
 - $\mu = -0.016 \, \mu m$, $\sigma = 1.735 \, \mu m$
- aligned tracker
 - $\mu = 0.010 \, \mu m$, $\sigma = 0.690 \, \mu m$
- MC (no misalignment)
 - $\mu = -0.069 \, \mu m$, $\sigma = 0.460 \, \mu m$

CMS Preliminary

3.8T collision data 2016

Alignment: cosmic rays + collisions

- tracker in data taking
 - $\mu = -0.435 \, \mu m$, $\sigma = 3.129 \, \mu m$
- aligned tracker
 - $\mu = -0.366 \, \mu m$, $\sigma = 1.428 \, \mu m$
- MC (no misalignment)
 - $\mu = -0.453 \, \mu m$, $\sigma = 1.172 \, \mu m$
DMRs in TIB and TOB

TID

- CMS Preliminary
- 3.8T collision data 2016
- Alignment: cosmic rays + collisions
- tracker in data taking: $\mu = -0.022 \mu m, \sigma = 1.042 \mu m$
- aligned tracker: $\mu = 0.015 \mu m, \sigma = 0.492 \mu m$
- MC (no misalignment): $\mu = 0.018 \mu m, \sigma = 0.264 \mu m$

TEC

- CMS Preliminary
- 3.8T collision data 2016
- Alignment: cosmic rays + collisions
- tracker in data taking: $\mu = 0.013 \mu m, \sigma = 2.739 \mu m$
- aligned tracker: $\mu = 0.032 \mu m, \sigma = 0.967 \mu m$
- MC (no misalignment): $\mu = 0.033 \mu m, \sigma = 0.697 \mu m$
Primary-vertex validation

Selection

- **Vertex**
 - minimum-bias events,
 - at least four d.o.f. in the vertex fit,

- **Tracks**
 - at least six hits in the tracker, of which at least two in the pixel detector,
 - at least one hit in the first layer of the Barrel Pixel or the first disk of the Forward Pixel,
 - $\chi^2_{\text{track}}/\text{n.d.o.f.} < 5$

Principle

- We consider one given track from a given vertex.
- The vertex is refitted without the track under scrutiny.
- The longitudinal and transversal projections of the impact parameter $<d_{xy}>$ and $<d_z>$ of the track are computed and plotted as a function of the track η and ϕ.

Biases

Random misalignments increase the spread.

Systematic misalignments biase the mean (pattern depend on misalignment).
Primary-vertex validation

Transversal impact parameter

![Graphs showing transversal impact parameter for different track parameters with CMS Preliminary 3.8T collision data 2016.](image)
Primary-vertex validation

Longitudinal impact parameter

![Graph showing longitudinal impact parameter for track \(\eta \) and track \(\phi \) [rad].](image)
$Z \rightarrow \mu\mu$ validation

Idea

- Data-driven method to investigate distortions in the geometry.
- Distortions in the geometry may degrade the kinematics of the two outgoing muons coming from the decay of a Z boson.
- The reconstruction of the Z boson is thus investigated by measuring its mass as a function of the kinematics of the muons.

Selection of the muons

- $p_T > 20 \text{ GeV}/c$
- $|\eta| < 2.4$
- $80 < M_{\mu\mu} < 120 \text{ GeV}/c^2$

NB: Muons are reconstructed with both the tracker and the muon system, but only the geometry of the tracker is updated in the next slides.
$Z \rightarrow \mu\mu$ validation

Procedure

- The Z-boson mass is reconstructed with a Voigtian function\(^2\) with fixed decay width for the Breit-Wigner component.
- The background is reconstructed with an exponential function.
- The mass is then estimated from the mean of the Voigtian function as a function of different variables:
 - the azimuthal angles ϕ_{μ^\pm} of each of the muons,
 - the rapidity separation $\eta_{\mu^+} - \eta_{\mu^-}$,
 - the cosine of the angle of the boson $\cos \theta_{CS}$ in the Collins-Soper frame.

Fit of the mass

Ideally, the mass should not depend on any of these variables. In order to illustrate this, a horizontal line is fitted to the distribution of the reconstructed masses (dashed lines).

\(^2\)Convolution of Gaussian and Lorentzian functions
Z → μμ validation

![Graph showing Z → μμ validation](image)

<table>
<thead>
<tr>
<th></th>
<th>χ^2/ndf</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracker in data taking</td>
<td>15.99</td>
<td>< 0.01</td>
</tr>
<tr>
<td>aligned tracker</td>
<td>1.39</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>χ^2/ndf</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracker in data taking</td>
<td>15.76</td>
<td>< 0.01</td>
</tr>
<tr>
<td>aligned tracker</td>
<td>1.33</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Z → μμ validation

<table>
<thead>
<tr>
<th>tracker in data taking</th>
<th>χ²/ndf</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>aligned tracker</td>
<td>1.31</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>0.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tracker in data taking</th>
<th>χ²/ndf</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>aligned tracker</td>
<td>1.43</td>
<td>< 0.09</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Prompt calibration

• High-level structures in the pixel detector can be promptly aligned during data-acquisition.

• Prompt calibration was applied from 16 August to 5 December 2016 ($\mathcal{L} = 16.4 \text{ fb}^{-1}$).

We show in the next slides the variations of the corrections to the position and orientation of the high-level structures over time:

• Calibration is triggered as soon as large movements are observed in any position (depending on the coordinate)

 Alignment updates vertical dashed lines
 Update threshold horizontal continuous lines

• One can clearly correlate movements in the pixel with magnet cycles (grey bands)
 • $\Delta x \lesssim 50 \mu\text{m}$
 • $\Delta y \lesssim 50 \mu\text{m}$
 • $\Delta z \lesssim 150 \mu\text{m}$

NB: At least $20k$ minimum-bias events must be used to perform the prompt calibration.
Corrections to the position in global x direction

![Graph showing corrections to the position in global x direction](image)

CMS Preliminary 13 TeV data (Aug. 16 - Dec. 5, 2016)

- Tracker alignment in 2016 data-taking used as reference
- Update threshold
- Alignment update
- Magnet < 3.8 T
- FPIX(x+,z-)
- BPIX(x+)
- FPIX(x+,z+)
- FPIX(x-,z-)
- BPIX(x-)
- FPIX(x-,z+)

Time

2016-08-27
2016-09-26
2016-10-26
2016-11-25

Delta x (um)
 Corrections to the position in global y direction

Graph:

- **CMS Preliminary**
- 13 TeV data (Aug. 16 - Dec. 5, 2016)
- Tracker alignment in 2016 data-taking used as reference
- Update threshold
- Alignment update
- Magnet < 3.8 T

Legend:

- FPIX(x+,z-)
- BPIX(x+)
- FPIX(x-,z-)
- BPIX(x-)
- FPIX(x-,z+)

Axes:

- **Δy (μm)**: y-axis
- **Time**: x-axis

Dates:

- 2016-08-27
- 2016-09-26
- 2016-10-26
- 2016-11-25
Corrections to the position in global z direction

![Graph showing corrections to position in global z direction](image_url)

CMS Preliminary

13 TeV data (Aug. 16 - Dec. 5, 2016)

Tracker alignment in 2016 data-taking used as reference

- Update threshold
- Alignment update
- Magnet < 3.8 T
- FPIX(x+,z-)
- BPIX(x+)
- FPIX(x+,z+)
- FPIX(x-,z-)
- BPIX(x-)
- FPIX(x-,z+)

Time

2016-08-27 2016-09-26 2016-10-26 2016-11-25
Corrections to the orientation in global x direction

CMS Preliminary

13 TeV data (Aug. 16 - Dec. 5, 2016)

Tracker alignment in 2016 data-taking used as reference

- Update threshold
- Alignment update
- Magnet < 3.8 T
- FPIX(x^+,z^-)
- BPIX(x^+)
- FPIX(x^+,z^+)
- FPIX(x^-,z^-)
- BPIX(x^-)
- FPIX(x^-,z^+)

Delta θ_x (micro-radians)

Time

- 2016-08-27
- 2016-09-26
- 2016-10-26
- 2016-11-25

Back-up

- MillePede
- Modules
- DMRs
- Primary-vertex validation
- $Z \rightarrow \mu \mu$ validation

Prompt calibration
 Corrections to the orientation in global y direction

CMS Preliminary

13 TeV data (Aug. 16 - Dec. 5, 2016)

Tracker alignment in 2016 data-taking used as reference

- Update threshold
- Alignment update
- Magnet < 3.8 T
- FPIX(x^+,z^-)
- BPIX(x^+)
- FPIX($x^+,$$z^+$)
- FPIX($x^-,$$z^-$)
- BPIX($x^-)$
- FPIX($x^-,$$z^+)$

Time

2016-08-27
2016-09-26
2016-10-26
2016-11-25

Δθ_y (μrad)

-50 0 50
Corrections to the orientation in global z direction

Tracker alignment in 2016 data-taking used as reference

- Update threshold
- Alignment update
- Magnet < 3.8 T

- FPIX(x^+,z^-)
- BPIX(x^+)
- FPIX(x^-,z^+)
- FPIX(x^-,z^-)
- BPIX(x^-)

Preliminary CMS 13 TeV data (Aug. 16 - Dec. 5, 2016)