TIPP2017

Patrick
Connor

Introduction
Tracker
alignment at
CMs

A picture of

the challenge
Track-based
approac
Implementation
Alignables
Weak modes
Time

variations
Performance

Configuration

Structure of
the tracker

Geometry
comparison
Validation

Summary

References

Back-up

1/19

Alignment of the CMS Tracker
at LHC Run-Il

Technology and Instrumentation in Particle Physics
Beijing 2017
Patrick L.S. Connor

on behalf of the CMS collaboration

Deutsches Elektronen-Synchrotron

22 May 2017

UH
_ij_i_ ﬁ HELMHOLTZ

‘ ASSOCIATION




TIPP2017
Patrick

Comnor @ Introduction
st Tracker alignment at CMS
et at A picture of the challenge
 piesure of Track-based approach

the challenge
Track-based
approac
Implementation
Alignables
Weak modes
Time

variations
Performance

Configuration
Structure of
the tracker

Geometry
comparison
Validation

Summary

References

Back-up

2/19




TIPP2017
Patrick

Connor Tracker alignment at CMS

Introduction
Tracker

alignment at Largest silicon tracker in the world!
cMs

A picture of

the challenge Purpose: reconstruct trajectories
ahproad

Implementation Until end of 2016:

CJiTl:,I,:z“ H units hit resolution

Time pixel || 1440 9 pm
variations strip 15148 20 — 60 pm

Performance

Configuration
Structure of
the tracker

Geometry
comparison
Validation

Summary

References

Back-up

3/19



TIPP2017

Patrick
Connor

Introduction
Tracker
alignment at
CMs

A picture of
the challenge

Track-based
approac

Implementation
Alignables
Weak modes
Time

variations
Performance
Configuration

Structure of
the tracker

Geometry
comparison
Validation

Summary

References

Back-up

3/19

Tracker alignment at CMS

Largest silicon tracker in the world!

Purpose: reconstruct trajectories

Until end of 2016:

H units hit resolution

pixel 1440 9 um
strip 15148 20 — 60 pm

(during mounting of the tracker)

Typically, the precision at mounting is
such that

Oalign = Ohit
Compute a correction to the mounting
of the modules such that

Oalign = Ohit
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position
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curvature

— O(10°) parameters

A picture of the challenge
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A picture of the challenge

In addition, tracks are distorted
by the misalignment.
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Track-based approach

Linearisation of least-square minimisation of the track fit [1, 2]

(p

tracks hits Ms — f(p Q') ’
=3 Y ()
i K

p stands for the alignment parameters and q for the track

parameters,

m stands for the measurements and f for the predictions,

and o stands for the uncertainties.

MillePede-I1

global-fit approach (large linear equation system)
minimise residuals and refit the tracks together
take into account all correlations

demanding in term of memory

NB: MillePede-Il is an project independent from CMS [3].

HipPy

local-fit approach

remove track parameters from the 2
iterative procedure

used for fine tuning
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Alignables

» Several levels of alignment:

o high-level structures (O(1 mm))
— when the statistics is limited
e modules (O(10 pm))

— requires larger statistics
— alignables

e positions, rotations and deformations can be aligned
— all parameters of alignables can be activated separately

(Sketch of the barrel and forward pixel subdetectors)
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Weak modes

Definition
A weak mode is any transformation such that Ay? ~ 0
i.e. it is a transformation that changes valid tracks into other valid tracks
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Weak modes

Definition

A weak mode is any transformation such that Ay? ~ 0

i.e. it is a transformation that changes valid tracks into other valid tracks
— detector and track topology are symmetric
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Weak modes

Definition

A weak mode is any transformation such that Ay? ~ 0

i.e. it is a transformation that changes valid tracks into other valid tracks
— detector and track topology are symmetric

Examples
Telescope Twist
AN
(1
. &
\
\\‘.
(plots from N. Bartosik’s thesis)
Solution

cosmic rays other topology

Z — pp momentum constraint on the two outgoing muons
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0/19 —> include time dependence but keep large statistics
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Configuration

We present now the performance of the alignment in 2016:
36 intervals of time.
Full module-level alignment
— possible thanks to high statistics of Z — pu and cosmic rays.
Determine global alignment with four iterations with MP

— in case of large corrections, linear approximation of x? is
limited.
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Configuration

We present now the performance of the alignment in 2016:
36 intervals of time.
Full module-level alignment
— possible thanks to high statistics of Z — pu and cosmic rays.
Determine global alignment with four iterations with MP
— in case of large corrections, linear approximation of x? is

limited.
dataset ‘ #tracks ‘ weight
minimum-bias tracks 13M | 0.2-0.3
isolated muons 53M 0.25
Z — pup 32M 1.0
cosmic rays 3M 2.5

— large statistics of minimum-bias events is available
but limited statistics of cosmic-rays and Z — pu data



TIPP2017

Patrick
Connor

Introduction

Tracker
alignment at
CMS

A picture of

the challenge
Track-based

approac|

Implementation
Alignables
Weak modes
Time

variations
Performance

Configuration
Structure of
the tracker

Geometry
comparison
Validation

Summary

References

Back-up

11/19

Configuration

We present now the performance of the alignment in 2016:
36 intervals of time.
Full module-level alignment
— possible thanks to high statistics of Z — pu and cosmic rays.
Determine global alignment with four iterations with MP
— in case of large corrections, linear approximation of x? is

limited.
dataset ‘ #tracks ‘ weight
minimum-bias tracks 13M | 0.2-0.3
isolated muons 53M 0.25
Z — pup 32M 1.0
cosmic rays 3M 2.5

— large statistics of minimum-bias events is available
but limited statistics of cosmic-rays and Z — pu data

Improve local precision with fifteen iterations with HipPy
— fine tuning.
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%E\%:;l::;nt o 36 intervals of time.

e e Full module-level alignment

:‘;:::;Eased — possible thanks to high statistics of Z — pu and cosmic rays.
Implementation Determine global alignment with four iterations with MP
CJLi"C‘;'le — in case of large corrections, linear approximation of x? is
Time limited.

Performance dataset ‘ #tracks ‘ weight
;E"if":o?" minimum-bias tracks | 13M | 0.2-10.3
Geomesry isolated muons 53M 0.25
Validation 7 — L 32M 1.0

Summany cosmic rays 3M 25

Back-up

— large statistics of minimum-bias events is available
but limited statistics of cosmic-rays and Z — uu data

Improve local precision with fifteen iterations with HipPy
— fine tuning.

11/19 Note: 150 GB of RAM and around 30 h are needed to run MillePede
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PXB PiXel Barrel TOB Tracker Outer Barrel
PXF PiXel Forward TID Tracker Inner Disks
TIB Tracker Inner Barrel TEC Tracker Endcaps

12/19
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ar fum

azjum

720 fum rad

Geometry comparison

CMS Preliminary 2016

EWPXB MPXF WTIB ETID MTOB MTEC jummmsm: i

Y-axis: tracker in data taking - aligned tracker

20, e e m,
150, 2 2150
100 k] a3 100
50 50 : ;
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-10 -1
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200G 0 @060 80 100 B e | F 20T G S0 100 200
riem o /rad z/em

o Each point represents a module; colour is related to the high-level
structure.

® One can see the movement Y (Ar, Az,rA¢) of a module initially at
position X (r, z, §).

— clear movements between the tracker in data-taking
and aligned tracker.
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number of modules / 0.2 pm

Distribution of the medians of the
residuals

CMS Preliminary

3.8T collision data 2016

CMS Preliminary

3.8T collision data 2016

M RN A AR LARS RARS RAR) RALY RAMY ARAE c A e e RARERARE RanseaEs
[ Alignment: cosmic rays + collisions ] =3 I Alignment: cosmic rays + collisions. B
300 tracker in data taking §=-0004pm, 0=1030pum ] ~N F tracker in data taking W=0.013 um, 0 =2.739 ym 1
[ —— aligned tracker H=0048um, 0=0589um © 1000 aligned tracker 1=0032 pym, 0=0967 ym
[ —— MC (no misalignment) n=-0015um, 0=0205pum ] - [ —— MC (no misalignment) 1=0033um, 0=0697um |
o 1 ) L i
250F 1 2 [ ]
3 ] 3 800F —
F ] <] I 1
200 — 1S - 4
[ ] 4= I 1
: BPIX ] o eoof TEC 1]
150 1 2 [ -
F E g L 4
[ ] 400 -

[=4

100 1 r 1
S0 B 200 b
3| S 1 P P oLty 1 .

-10 8 6 -4 -2 0 2 4 6 8 10 -10 8 6 -4 -2 0 2 4 6 8 10

median(x'p(ed—x'm)[um]

median(x'p’ed-x'h“)[um]

For each module, the median of the residuals is computed and

histogrammed.

Optimally aligned detector has smallest width
— lower limit on width determined by statistical precision.
Sensitive to local alignment precision.
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number of modules / 0.2 pm

Distribution of the medians of the
residuals

CMS Preliminary

3.8T collision data 2016

CMS Preliminary

3.8T collision data 2016

M RN A AR LARS RARS RAR) RALY RAMY ARAE c A e e RARERARE RanseaEs
[ Alignment: cosmic rays + collisions ] =3 I Alignment: cosmic rays + collisions. B
300 tracker in data taking §=-0004pm, 0=1030pum ] ~N F tracker in data taking W=0.013 um, 0 =2.739 ym 1
[ —— aligned tracker H=0048um, 0=0589um © 1000 aligned tracker 1=0032 pym, 0=0967 ym
[ —— MC (no misalignment) n=-0015um, 0=0205pum ] - [ —— MC (no misalignment) 1=0033um, 0=0697um |
o 1 ) L i
250F 1 2 [ ]
3 ] 3 800F —
F ] <] I 1
200 — 1S - 4
[ ] 4= I 1
: BPIX ] o eoof TEC 1]
150 1 2 [ -
F E g L 4
[ ] 400 -

[=4

100 1 r 1
50F b 2001 .
3| S 1 P P oLty 1 .

-10 8 6 -4 -2 0 2 4 6 8 10 -10 8 6 -4 -2 0 2 4 6 8 10

median(x'p(ed—x'm)[um]

median(x'p’ed-x'h“)[um]

For each module, the median of the residuals is computed and

histogrammed.

Optimally aligned detector has smallest width
— lower limit on width determined by statistical precision.
Sensitive to local alignment precision.

— Improvement in all parts of the subdetector.
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number of modules / 0.2 pm

Distribution of the medians of the
residuals

CMS Preliminary 3.8T collision data 2016 CMS Preliminary 3.8T collision data 2016

M RN A AR LARS RARS RAR) RALY RAMY ARAE c A e e RARERARE RanseaEs

[ Alignment: cosmic rays + collisions ] =3 [ Alignment: cosmic rays + collisions 4

300 tracker in data taking §=-0004pm, 0=1030pum ] ~N F tracker in data taking W=0.013 um, 0 =2.739 ym 1

[ —— aligned tracker H=0048um, 0=0589um © 1000 aligned tracker 1=0032 pym, 0=0967 ym

[ —— MC (no misalignment) n=-0015um, 0=0205pum ] - [ —— MC (no misalignment) 1=0033um, 0=0697um |

o 1 ) L i

250 1 2 [ ]

[ 1 3 soof -

F ] <] I 1

200F - 4 £ b 1

F - ] u F R

F 1 2 eoof E

150F (V) 4 3 [ ]

F E g L 4

[ ] 400 -

100 1 = r 1

50F 3 200 ]

3| S 1 P P oLty 1 .
-10 8 6 -4 -2 0 2 4 6 8 10 -10 8 6 -4 -2 0 2 4 6 8 10

median(x p(ed—x i [um] median(x pred-x i [um]

® For each module, the median of the residuals is computed and
histogrammed.

o Optimally aligned detector has smallest width
— lower limit on width determined by statistical precision.

® Sensitive to local alignment precision.

— Improvement in all parts of the subdetector.
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Ageing of the modules

Charged s CMS Preliminary 3.8T collision data 2016
frack Z?cluster E | ]
- = 6 - Alignment: cosmic rays + collisions BPIX,x ]
E l150 & L ——e—— alignment in data taking ]
d 50V B O IO ey s .0 ——e—— aligned tracker i
hit X a E 1
2 eF ]
=

= £
Charged %BLA S of h
track P F ]
\ zi %\uster < SE E
dl E[150v Nl s . a E
true X L il
B: - 6 = -
G)“’ CE e S e 3

20160508 20160704 20160828 2016:1008

(from N. Bartosik’s Thesis) Time

o Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
o E-field and charge carrier mobility change with time.

—— Lorentz drift is not constant in time!
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Ageing of the modules

Charged s CMS Preliminary 3.8T collision data 2016
track 2 £ r 1
: Cluster 3 E ]
== 5 Alignment: cosmic rays + collisions BPIX, x —|
E l150 & L ——e—— alignment in data taking ]
d U - > s Fe ——e—— aligned tracker |
hit X o 4 r \ ]
2 eF ;

= .

—
Charged %SLA S of h
track T n ]
\ zi %\uster < SE E
d 2| "X’ -4 } {
B: -3.8T 6 1
®“ N 6*HHHHHHHHHHHHHHHHHH*
B Y 2016-05-08 2016-07-04 2016-08-28 2016-10-08

(from N. Bartosik’s Thesis) Time

o Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
o E-field and charge carrier mobility change with time.

— Lorentz drift is not constant in time!

o Distributions of the median of the residuals can be produced
separately for modules with electric field pointing in- or outwards.
We show here the difference of the respective means Ay over time.

® Ideal tracker would have Ay = 0.



TIPP2017

Patrick
Connor

Introduction

Tracker
alignment at
CMs

A picture of

the challenge
Track-based

approac|

Implementation
Alignables
Weak modes
Time

variations
Performance
Configuration

Structure of
the tracker

R
SR
Validation

Summary

References

Back-up

16/19

Ageing of the modules

Charged CMS Preliminary 3.8T collision data 2016
track - T °F ]
“i cluster 3 £ ]
= 6 — Alignment: cosmic rays + collisions BPIX,x —
E 150 & L ——e—— alignment in data taking ]
d - > S L0 ——e—— aligned tracker |
X -\ 4
hit a B
2 - !

S

AX ‘S

Charged 2200 S
A =
<

d

17/
cluster 2

track \ z

E

\f\\l\u

LIl
2016.05.08 20160704 20160828 2016-10-08

(from N. Bartosik’s Thesis) Time
Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
E-field and charge carrier mobility change with time.

© B:-8.8T 6
{

— Lorentz drift is not constant in time!

Distributions of the median of the residuals can be produced
separately for modules with electric field pointing in- or outwards.
We show here the difference of the respective means Ay over time.

Ideal tracker would have Ay = 0.

— The difference of the means Ay in local x direction indicates

the recovery of Lorentz-angle effects.
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Structure of (from N. Bartosik’s Thesis) Time
the tracker . . . .
Geometry o Lorentz drift: reconstructed hit is displaced w.r.t. true hit.
el o E-field and charge carrier mobility change with time.
e — Lorentz drift is not constant in time!
References
Erclleum o Distributions of the median of the residuals can be produced

separately for modules with electric field pointing in- or outwards.
We show here the difference of the respective means Ay over time.

® Ideal tracker would have Ay = 0.

— The difference of the means Ay in local x direction indicates
16/19 the recovery of Lorentz-angle effects.
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Primary-vertex validation
CMS Preliminary 3.8T collision data 2016

Alignment: cosmic rays + collisions
—e— aligned tracker

—o— tracker in data taking
—&— MC (no misalignment)

50 o0
é%céééé 5
5 o

(from M. Musich)

0 1
track @ [rad]
Given N tracks from a vertex, N — 1 tracks are used to refit the
vertex
— evaluate the distance of the N-th track to the refitted vertex
< dgyy > and < d, > as a function of the track ¢ and 7.

Mostly sensitive to movements in pixel subdetector.
Global patterns suggest systematic misalignments
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Introduction

Tracker Alignment: cosmic rays + collisions

alignment at —e— aligned tracker

CMS —o— tracker in data taking

A picture of —&— MC (no misalignment)

the challenge

Track-based 30 D

A 00 Q
pproaci @% 3 5 5

Implementation (]

Alignables

Weak modes

Time

variations

Performance

Configuration
Structure of
the tracker

Geometry (from M. Musich)

e s 2 40 1 2 3
track @ [rad]

Summary

Rererent o Given N tracks from a vertex, N — 1 tracks are used to refit the

Back-up vertex

— evaluate the distance of the N-th track to the refitted vertex
< dgyy > and < d, > as a function of the track ¢ and 7.

Mostly sensitive to movements in pixel subdetector.

Global patterns suggest systematic misalignments

17/10 — here, movement in barrel pixel half-shell is cured.
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Primary-vertex validation

CMS Preliminary 3.8T collision data 2016

Alignment: cosmic rays + collisions
—e— aligned tracker

—o— tracker in data taking
—&— MC (no misalignment)

(from M. Musich)

3 2 -1 0 1 2 3
track @ [rad]
o Given N tracks from a vertex, NV — 1 tracks are used to refit the

vertex
— evaluate the distance of the N-th track to the refitted vertex
< dgyy > and < d, > as a function of the track ¢ and 7.

® Mostly sensitive to movements in pixel subdetector.

® Global patterns suggest systematic misalignments

— here, movement in barrel pixel half-shell is cured.
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M., [GeV]

Z — pp validation

o1.af S Ptmneny  SSTcomn Jea 2000 < ova SRy 2 ST S Jea s
F Alignment: cosmic rays + collisions E 3 F Alignment: cosmic rays + collisions ]
91.25f —s— tracker in data taking - == 91.25[ —— tracker in data taking -]
I —e— aligned tracker E Ed [ —e— aligned tracker E
91.20F 4 = 91.20F 3
91.152— } 4 ! ? { %— 91.152— ; i b } b + —
91.10:—{)7& +++ +i++$+ +— 9110—+i++++”++ - e
91.05;—+ } } } ; t } { E 91.05;—7 Py { } 4
o100 4 } ¢ v 3 oL00f ; 1 boH
s0.95F 1 cossf 3
TN N U U A N TN N T T N N
9090=g ==Y 1 2 3 90907z -1 0 1 2 3
o, Q.

The mass of the Z boson is reconstructed from two outgoing
muons.
The mass can be measured as a function of their kinematics

— shown here as a function of the azimuthal angle for both
muons.
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M., [GeV]

Z — pp validation

o1.af S Ptmneny  SSTcomn Jea 2000 < ova SRy 2 ST S Jea s
F Alignment: cosmic rays + collisions E 3 F Alignment: cosmic rays + collisions ]
91.25f —s— tracker in data taking - == 91.25[ —— tracker in data taking -]
I —e— aligned tracker E Ed [ —e— aligned tracker E
91.20F 4 = 91.20F 3
91.152— } 4 ! ? { %— 91.152— ; i b } b + —
91.10:—{)7& +++ +i++$+ +— 9110—+i++++”++ - e
91.05;—+ } } } ; t } { E 91.05;—7 Py { } 4
o100 4 } ¢ v 3 oL00f ; 1 boH
s0.95F 1 cossf 3
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9090=g ==Y 1 2 3 90907z -1 0 1 2 3
o, Q.

The mass of the Z boson is reconstructed from two outgoing
muons.
The mass can be measured as a function of their kinematics

— shown here as a function of the azimuthal angle for both
muons.

— ¢-modulation has been cured.
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M., [GeV]

Z — pp validation

o1.af S Ptmneny  SSTcomn Jea 2000 < ova SRy 2 ST S Jea s
F Alignment: cosmic rays + collisions E 3 F Alignment: cosmic rays + collisions ]
91.25f —s— tracker in data taking - == 91.25[ —— tracker in data taking -]
I —e— aligned tracker E Ed [ —e— aligned tracker E
91.20F 4 = 91.20F 3
91.152— } 4 ! ? { %— 91.152— ; i b } b + —
91.10:—{)7& +++ +i++$+ +— 9110—+i++++”++ - e
91.05;—+ } } } ; t } { E 91.05;—7 Py { } 4
o100 4 } ¢ v 3 oL00f ; 1 boH
s0.95F 1 cossf 3
TN N U U A N TN N T T N N
9090=g ==Y 1 2 3 90907z -1 0 1 2 3
o, Q.

The mass of the Z boson is reconstructed from two outgoing
muons.
The mass can be measured as a function of their kinematics

— shown here as a function of the azimuthal angle for both
muons.

— ¢-modulation has been cured.
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Summary

The topic of alignment was introduced:

o how the challenge is addressed at CMS;

its implementation at CMS was described:

e how to deal with the weak modes

e and how to include movements over time;

and the performance in 2016 was shown:

e most elaborate alignment campaign of the largest silicon
tracker with around 100M simultaneously refitted tracks in 36
intervals of time;

e the alignment precision in pixel part of order of 10 um;

e and the improvement was presented from various validations
with data-driven methods.
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e and how to include movements over time;
® and the performance in 2016 was shown:

Implementation

Alignables
¥‘{==k modes e most elaborate alignment campaign of the largest silicon
variations tracker with around 100M simultaneously refitted tracks in 36
Performance intervals of time;

Configuration
Structure of

e the alignment precision in pixel part of order of 10 um;
2‘;:;:::‘;’ e and the improvement was presented from various validations
comparison with data-driven methods.

Validation
Thanks a lot!
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MPIl MillPeds

Linearisation of the x? allows to make use of linear algebra:
Cx (Ap Agq)=Db

Partition of the matrix C into blocks for local and global parameters
allows to reduce drastically the size of the matrix to invert:

C;Aq; =Db; local parameters
C'Ap=Db global parameters

where b’ can be determined from Aq; and C’ from C;l and some
additional blocks in C' describing correlations between local and
global parameters

MillePede = Mille + Pede

Mille determination of all the values needed to calculate
the global x?2
— p, q, m, o, local df/dq and global df/ dp
parameters

Pede determination of local (track) refits to construct the
limear equation system, then determination of
global (alignment) parameters
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Pt High Density Interconnect Board:  Layers: ® lamination of cable in house
vertex @ flexible, low mass PCB | S | ® soldered to HDI
validation ®glued to sensor
Z = up @rad hard SMD components m “ -
validation MB glued & wirebonded > = > 4
Toumre !
Prompt o Powesable & Comnector
v 2

calibration
S |

ROC’s (IBM) | I L LT ® 285 yum thickness

Read Out Chip IBM-PSI46: S ¢ e : £|| ® n-on-n devices

©0.25)1 DeepSubMicron process - @ moderated p-spray

©52x80 pixels of 150100 um : . ® DOFZ-silicon in <111>orientation
> 66 kpixel/module - @ resistivity of 3.7 k &m

@ power consumption ~28 uW/pixel : ;s @ processed on both sides

@ chips thinned 0 170 um
=>reduced MBcontribution

Overall Dimensions:
T i S iCn) ® Sensor 66.6 x 18.6 mm*
. ®Baseplate 65 x 26 mm®

Weight:

® Module ~229
® Cables ~13g

Baseplate
@ 250 um Si-Nitride material

‘@ two small strips glued to ROC's
=>reduced MB-contribution

Power consumption:
-2 W per fll module
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DMRs

Principle
The Distributions of the medians of the residuals are a measure of the
local precision.

Deviations from 0 indicate possible biases.

The width is also sensitive to the statistics®.

Procedure

Each track is reconstructed for different geometries.

The hit prediction x4 for each module is obtained from all other
track hits. The median of this

/

bred — Thie is histogrammed for each module.

The residuals =
For each high-level structure, the median of the residuals is
histogrammed and plotted.

In order to avoid statistical correlations, we use independent samples for
alignment and validation.

YIn the next plots, we took care of having comparable statistics for
MC and data.
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Selection

Vertex

Tracks

Principle

Primary-vertex validation

minimum-bias events,
at least four d.o.f. in the vertex fit,

at least six hits in the tracker, of which at least two in
the pixel detector,

at least one hit in the first layer of the Barrel Pixel or
the first disk of the Forward Pixel,

X2 o /ndof. <5

We consider one given track from a given vertex.

The vertex is refitted without the track under scrutiny.

The longitudinal and transversal projections of the impact parameter
< dzy > and < d. > of the track are computed and plotted as a function
of the track n and ¢.

Biases

Random misalignments increase the spread.

Systematic misalignments biase the mean (pattern depend on misalignment).
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Z — pp validation

ldea

Data-driven method to investigate distortions in the geometry.

Distortions in the geometry may degrade the kinematics of the two
outgoing muons coming from the decay of a Z boson.

The reconstruction of the Z boson is thus investigated by measuring
its mass as a function of the kinematics of the muons.

Selection of the muons

pr > 20GeV/c
In| < 2.4
80 < M, < 120GeV/c?

NB: muons are reconstructed with both the tracker and the muon system, but only the geometry
of the tracker is updated in the next slides.
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Z — pp validation

Procedure

The Z-boson mass is reconstructed with a Voigtan function?® with
fixed decay width for the Breit-Wigner component.

The background is reconstructed with a exponential function.

The mass is then estimated from the mean of the Voigtian function
as a function of different variables:

e the azimuthal angles ¢+ of each of the muons,

e the rapidity separation 1,4+ — 17,—,

e the cosine of the angle of the boson cosfcs in the
Collins-Soper frame.

Fit of the mass

Ideally, the mass should not depend on any of these variable. In order to
illustrate this, a horizontal line is fitted to the distribution of the reconstructed
masses (dashed lines).

2Convolution of Gaussian and Lorentzian functions
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CMS Preliminary
FT T T

3.8T collision data 2016
T T T

Z — pp validation

CMS Preliminary
T

3.8T collision data 2016
T T T
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91.155— b 4 { + %— 91.155— } { } } -
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x2 /ndf p-value x2 /ndf p-value

tracker in data taking 15.99 < 0.01 tracker in data taking 15.76 < 0.01
aligned tracker 1.39 0.14 aligned tracker 1.33 0.17
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Prompt calibration

High-level structures in the pixel detector can be promptly
aligned during data-acquisition.

Prompt calibration was applied from 16 August to 5 December
2016 (£ = 16.4fb~1).

We show in the next slides the variations of the corrections to
the position and orientation of the high-level structures over
time:

Calibration is triggered as soon as large movements are
observed in any position (depending on the coordinate)

Alignment updates vertical dashed lines
Update threshold horizontal continuous lines

One can clearly correlate movements in the pixel with magnet
cycles (grey bands)

e Az <50um

e Ay <50 pm

e Az <150 pum

NB: At least 20k minimum-bias events must be used to perform the prompt calibration.
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