R&D on a Scintillating Fiber Tracker with SiPM array readout for Application in Space

P. Azzarello, F. Cadoux, D. La Marra, C. Perrina, X. Wu
✉ chiara.perrina@unige.ch
Astroparticle physics and high energy astrophysics are in a “golden” era thanks to a series of very successful and long-running space and ground based experiments (eg. PAMELA, Fermi, AMS-02, H.E.S.S., Auger, IceCube, ...) – The multi-messenger/multi-wavelength/multi-platform approach is opening up new possibilities in observation and discovery – The hot topics are still: dark matter, comic ray origin, antimatter

The future of ground-based observation is very brilliant with approved new projects (CTA, LHASSO) and proposed projects (KM3NeT, IceCube Gen2, ...)

Need complementary future space missions
– Direct cosmic ray detection: getting to the “knee” (HERD, ...)
– Close the gamma-ray “MeV” gap (PANGU/e-ASTROGAM, ...)
– Antimatter and DM search with antiparticles > TeV (ALADINO, ...)
The University of Geneva has long experience in silicon tracker detectors in Space (AMS-01, AMS-02, DAMPE).

New technologies to replace silicon detectors are under study:
- Our idea is to use scintillating fiber mats instead of silicon strip detectors.

DAMPE plane

AMS-02 plane

PoS(Vertex2014)028

PoS(ICRC2015)1192

Fiber mat

SiPM
The SciFi project for Space

- Six fiber layers in each mat
- 250 μm diameter, Kuraray SCSF-78M (LHCb)
- 2 lengths
- SiPM on each end of the fiber mat to measure particle with Z = 1 on one side and Z ≤ 20 on the other (two different gains)
- ∼ 9.8 cm width to match for 3 SiPM arrays

- SiPM multi-channel array from Hamamatsu S10943-3183(X)
 - 128 channels per array
 - 96 pixels per channel
 - Pixel size: 57.5 μm × 62.5 μm
 - Channel size: 230 μm × 1500 μm
From the project to reality (1)

Extremities polished at EPFL (Lausanne, CH) with diamond head

C. Perrina
Printed Circuit Board
The 128 channels of each SiPM array are split in 4 x 32 lines with flex cables going in opposite direction.

Front-end electronics board
2x VATA 64 HDR 16, to readout the 128 MPPC channels.

Four zero-insertion-force (ZIF) sockets to connect the MPPC board.
Fiber module prototypes

- Two fiber modules ready and tested during a test beam (May 15 - 19, 2017) at CERN with a hadron beam of 100 GeV/c.

- 4 millions events collected

- Data analysis just started
Signal distribution integrated over the 128 channels of a SiPM.

No clusterization performed.

First peak = no signal.

One peak corresponds to one photo-electron (p.e.).

From the signal distribution we can compute the signal for one pixel.
This kind of detector (fiber + SiPM) has never been used in Space.

- Needed space qualification tests
 - Thermal tests;
 - Vacuum tests;
 - Vibrations.

- Tests on
 - SiPMs;
 - SiPMs mounted on PCB;
 - fiber mats.
The V_{BD} for each channel can be found by plotting (Inverse Logarithmic Derivative method):

$$\frac{1}{I} \times \frac{dI}{dV}$$

V_{BD} is given by the V for which the linear fit crosses zero.
Flex 4 V_{BD} corrected for 25 °C
V_{BD} vs. Temperature

Flex 4 Channel 129

\[
\begin{align*}
\text{Output current (nA)} & \\
10^{-3} & \quad 10^{-2} & \quad 10^{-1} & \quad 10^0 & \quad 10^1 & \quad 10^2
\end{align*}
\]

\[
\begin{align*}
\text{Reverse voltage (V)} & \\
52.5 & \quad 53.0 & \quad 53.5 & \quad 54.0 & \quad 54.5 & \quad 55.0 & \quad 55.5 & \quad 56.0 & \quad 56.5 & \quad 57.0
\end{align*}
\]

\[
\begin{align*}
0^\circ C & \quad 5^\circ C & \quad 10^\circ C & \quad 15^\circ C & \quad 20^\circ C & \quad 25^\circ C & \quad 30^\circ C & \quad 35^\circ C & \quad 40^\circ C
\end{align*}
\]

\[
\begin{align*}
\text{Breakdown voltage vs. Temperature at 6 step bw}
\end{align*}
\]

\[
\begin{align*}
\frac{dV_{BD}}{dT} = 52.8 \text{ mV/}^\circ C
\end{align*}
\]
Flex 4 after thermal cycles
V_{BD} corrected for 25 °C

Thermal cycles
5 x (-30 °C -> +60 °C)
The discrepancy between V_{BD} measured before thermal cycles and after is $< 0.16 \%$.
Readout improvement: SIPHRA chip

- SIPHRA = “Silicon Photomultiplier Readout ASIC”
- New ASIC from IDEAS for space applications
- The circuit has been designed under contract from the ESA with support from the Norwegian Space Center and the University of Geneva.

- **12-bits ADC included.**
- One line to readout and digitize one PT100 temperature sensor.
- One single power supply voltage: **3.3 V**.
- Various operation modes available.
 - It can provide in output only the channels with a signal higher than a programmed threshold (one for each channel).
 - Data reduction at ASIC level!
- 1 mW power consumption per channel.
- Test board for SIPHRA chip is being produced and tests will start in the next weeks.
Conclusions

Advantages

• Less fragile;
• Flexible geometry;
• No wire bonds;
• Single photon response;
• High detection efficiency;
• High gain at low bias voltage;
• Together with SIPHRA: simplified DAQ electronics;
 • No Op-amp needed, data reduction done at ASIC level;
 • Only 3.3 V power line needed (apart from bias line).

Disadvantages

- Low Technology Readiness Level (TRL);
- Effects of dark count;
- Dependence of SiPMs on temperature.
Future

- More complete diagnostic tool will be introduced
 - Calibration with LEDs;
 - Calibration with radioactive sources;

- Space qualification tests to increase the TRL
 - Thermal tests;
 - Vacuum tests;
 - Vibrations.

- Tests on
 - SiPMs;
 - SiPMs mounted on PCB;
 - Fiber mats;
 - Complete modules;
 - Planes made of more modules.

Work in progress!
Thank you!!
Principle of operation

Basic operation
- Each pixel operates separately in Geiger-mode
- Each pixel outputs a same amplitude pulse
- Pulse generated by multiple pixels are output while superimposed onto each other (detected at the same time)
- No position information
MPPC Technology Overview

What is an MPPC?
- Multi-Pixel Photon Counter
 a new type of photon-counting device
 made up of multiple APD pixels
 operated in Geiger mode

Features
- Small size / light weight
- Room temperature operation
- Low bias operation : ~70V
- High gain: 10^5 to 10^6
- Excellent timing resolution
- Insensitive to magnetic fields
- Simple readout circuit operation
Geiger-mode operation of SiPMs

Geiger-mode operation

APD
Quenching resistor

Output current [A]

Reverse Voltage [V]

Vop: Operating voltage
VBR: Breakdown voltage

Geiger mode region

Vov: Over voltage
Vov = Vop - VBR

Copyright © Hamamatsu Photonics K.K. All Rights Reserved.
Product outline
- MPPC
- Effective photosensitive area 0.23×1.5mm, 128ch. Array (64ch/chip × 2chip)
- Surface mounted package with 2 holes

![Image of SiPM array]

Table: Parameters and Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective active area / channel</td>
<td>--</td>
<td>230(X) × 1500(Y)</td>
<td>μm</td>
</tr>
<tr>
<td>GAP between channels (on chip)</td>
<td>--</td>
<td>20</td>
<td>μm</td>
</tr>
<tr>
<td>GAP between channels (between chip)</td>
<td>--</td>
<td>250 ± 50</td>
<td>μm</td>
</tr>
<tr>
<td>Number of channels</td>
<td>--</td>
<td>128 (64 × 2chip)</td>
<td>ch</td>
</tr>
<tr>
<td>Number of pixels / channel</td>
<td>--</td>
<td>4(X) × 24(Y)</td>
<td>--</td>
</tr>
<tr>
<td>Pixel size</td>
<td>--</td>
<td>57.5(X) × 62.5(Y)</td>
<td>μm</td>
</tr>
</tbody>
</table>
Properties of our SiPM array

<table>
<thead>
<tr>
<th>Property</th>
<th>ID</th>
<th>VR=Vop</th>
<th>40</th>
<th>VBR+2.5</th>
<th>65</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown voltage</td>
<td>VBR</td>
<td>--</td>
<td>40</td>
<td>--</td>
<td>65</td>
<td>V</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>Vop</td>
<td>--</td>
<td>VBR+2.5</td>
<td>--</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vop variation between channels</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.4</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>Dark current / channel</td>
<td>ID</td>
<td>VR=Vop</td>
<td>--</td>
<td>20</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Cross talk</td>
<td>--</td>
<td>VR=Vop</td>
<td>--</td>
<td>8</td>
<td>15</td>
<td>%</td>
</tr>
<tr>
<td>Terminal capacitance / channel</td>
<td>Ct</td>
<td>VR=Vop 100kHz</td>
<td>--</td>
<td>12</td>
<td>--</td>
<td>pF</td>
</tr>
<tr>
<td>Gain</td>
<td>M</td>
<td>VR=Vop</td>
<td>--</td>
<td>2×10⁶</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Quenching resistance</td>
<td>Rq</td>
<td>120</td>
<td>160</td>
<td>240</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of operating voltage</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>60</td>
<td>--</td>
<td>mV/C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spectral response range</th>
<th>λ</th>
<th>VR=Vop</th>
<th>320 to 900</th>
<th>nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak sensitivity wavelength</td>
<td>λp</td>
<td>VR=Vop</td>
<td>--</td>
<td>450</td>
</tr>
<tr>
<td>Photon detection efficiency at λp *1</td>
<td>PDE</td>
<td>VR=Vop</td>
<td>25</td>
<td>35</td>
</tr>
</tbody>
</table>
Layout of our SiPM array

top = odd channels

bottom = even channels
Flex 4 before thermal cycles

V_{BD} NON corrected by temperature
Flex 4 after thermal cycles

\[V_{BD} \] NON corrected by temperature

![Graph showing output current vs. reverse voltage and breakdown voltage vs. channel id at 4 step bw.](image)
• Altera Cyclone V FPGA.
• FEE board analogue signal digitization.
• Communication/data transfer via an USB3 port.
• DAQ architecture developed by the DPNC electronics group.
• Common digital interface and related control software, to be used by different experiments.