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Physics Experiments at the Energy Frontier
HEP experiments are physically large devices composed of high precision 
inner detectors (r=3-25cm) which must withstand large radiation doses!

Radiation Tolerance Scale of inner layers is 1016-1017cm−2 (>500Mrad)
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Diamond has the following properties:
• \

Electronic Properties:
• Radiation tolerance - no frequent replacements
• Low dielectric constant - low capacitance
• Low leakage current - low readout noise
• Good insulating properties - large active area
• Room temperature operation - no cooling necessary
• Fast signal collection time – no ballistic deficit 
• Smaller signal than Silicon – larger energy to create eh-pair

This talk is about:
• Polycrystalline Chemical Vapor Deposition (pCVD) Diamond
• Single Crystal Chemical Vapor Deposition (scCVD) Diamond
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130 participants 32 institutes



Introduction: Properties and Charge Collection

5Harris KaganTIPP 2017 – Beijing, China



Introduction: Properties and Charge Collection

6Harris KaganTIPP 2017 – Beijing, China



Introduction: Properties and Charge Collection

7Harris KaganTIPP 2017 – Beijing, China

Polycrystalline CVD (pCVD) Wafer Growth

Single-crystal CVD (scCVD) Wafer Growth

15cm

Wafers 5-10mm x 5-10mm; 
scCVD diamond collects full 
charge

Wafers 15cm diameter; wafer 
collection distance 400µm-500µm

Uniformity across wafer ~5%
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• High quality pCVD diamond typically “pumps” by a factor of 1.5-1.8
• Traps/defects in material → ionization creates carriers which may fill traps
• Usually operate at E=1-2V/μm → drift velocity saturated
• Charge collection distance of 100μm → Average charge of 3600e
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Radiation Tolerance
- binding energy, displacement energy
- charge collection distance
- mean free path, drift distance
- elastic, inelastic, total cross section
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Proton Irradiation Summary – CERN PS 24 GeV protons

Irradiation results up to 2.2 x 1016 p/cm2 (~500Mrad)
Same damage curve, same damage constant (k) for pCVD and scCVD diamond
Larger mfp0 performs better at any fluence
24 GeV proton damage characterized

Damage Equation:
n  =   n0 +  kφ
↓           ↓
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Particle Energy Relative k
p 24 GeV 1.0

800 MeV 1.79±0.13
70 MeV 2.4±0.4
25 MeV 4.5±0.6

n 1 MeV 4.5±0.5
π 200 MeV 2.5 – 3.0

Summary of proton, neutron and pion irradiations

Damage curves are beginning to be mapped out
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Applications in the LHC and Experiments
- beam condition/beam loss monitors
- pixel detectors
- 3D devices 



Diamond devices in experiments

TIPP 2017 – Beijing, China 17Harris Kagan

 Beam Conditions Monitors/Beam Loss Monitors
Essentially all modern collider experiments

 Current generation Pixel Detectors
ATLAS Diamond Beam Monitor (DBM)

 Future HL-LHC Trackers
3D diamond

 Future BCM’
Multipad design
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 ATLAS DBM:diamond pixel detectors in ATLAS (tracking)
 Total production: 45 diamonds (500µm thick) w/FE-I4b
 Modules Assembled at CERN
 Installed during LS1

8 telescopes
(2 Si\6 Diamond)

symmetric
around ATLAS IP

854mm < |z| < 1092mm
3.2 < |η| < 3.5
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 ATLAS DBM integrated in ATLAS readout in 2015
 Thresholds tuned to 2500e

Would like to lower this (1100e possible on bench)
 Took data – found operation issues
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 Use hits from the 3 modules for reconstructing tracks

 Can discriminate between IP and background particles
 Plots above use initial alignment

 2 electrical incidents in 2015 caused loss of modules(Si/D)
 now in re-commissioning phase
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Rate Studies
- bunch spacing
- fast electronics
- rate effects
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 Done at PSI - 2 yrs ago published rates up to 300kHz/cm2

 Last year w/new electronics, rates up to 10-20MHz/cm2

 Pad detector tested in ETH-Z telescope (CMS Pixels)
 Electronics is prototype for HL-LHC BCM/BLM

19.8ns bunch spacing clearly visible
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No rate dependence observed in pCVD up to 10-20MHz/cm2

Now extending dose to 1016 n/cm2

 Done at PSI - two years ago rates up to 300kHz/cm2

 Last year w/new electronics, rates up to 10MHz/cm2
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Device Development – 3D Diamond
- mean free path, drift distance
- planar strip, phantom, 3D
- pixel detectors
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Have to make resistive columns in diamond for this to work
-columns made with 800nm femtosecond laser
-initial cells 150µm x 150µm; columns 6µm diameter

Comparison of 3D 
and planar devices

After large radiation fluence all detectors are trap limited
•Mean free paths < 75µm
•Would like to keep drift distances smaller than mfp

Can one do this in 
pCVD diamond?
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3D

strip

phantom

Simultaneously readout all 3 devices

Two years ago we showed the results in scCVD diamond
-Compared scCVD strip detector (500V) with 3D (25V)

Last year the first 3D device in pCVD diamond
-Compare pCVD strip detector (500V) with 3D (60V)

This year the first 3D pixel detector in pCVD diamond
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 Measured column efficiency: 92%
 3D cells are 150μm x 150μm
 Measured noise ~proportional to capacitance
 Measured Signal read out as ganged cells

 Visually 3D gives more charge than planar strip!
Planar Strip Phantom 3D
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 Measured signal (diamond thickness 500um):
 Planar Strip ave charge

6,900e or ccd=192um
 3D ave charge

13,500e or ccdeq=350-375um
 For the first time collect >75% of charge in pCVD 
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 In May/Sept 2016 tested first full 3D in pCVD      
with three dramatic improvements
 An order of magnitude more cells (1188 vs 99) 
 Smaller cell size (100μm vs 150μm)
 Higher column production efficiency (99% vs 92%)

Readout side HV bias side
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Proved viability (>99%) of new column fabrication procedure

Issues mainly due to communications about handling 
procedures – led to:
• Surface contamination
• Breaks in surface metallization

All fixable!
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 Preliminary results of full 3D – device works well
 First plots of 3D ave charge in entire detector
 Largest charge collection in pCVD diamond 
 >85% of charge collected in contiguous region

 Analysis in progress of full detector

RD42 Preliminary
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Production of first 3D pixel device in pCVD – CMS pixel chip
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 Laser fabrication of resistive columns: Oxford
 Mask set: Manchester
 Cleaning/Backplane metallization: Ohio State
 Bump Bonding/Pixel metallization: Princeton
 Module Building/Testing:ETH-Zürich, Rutgers
 Irradiation: JSI/Ljubljana (still to be done)
 Beam Tests:ETH-Zürich, Ohio State



Production Plans: ATLAS, CMS 3D pCVD Pixels

34Harris KaganTIPP 2017 – Beijing, China

3D Diamond Pixel
Efficiency (97%)

Planar Silicon Pixel
Efficiency (99%)

Some configuration 
issues with pixel chip
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Presently producing 3500 cell pixel prototype

• Two being drilled now:
• Oxford (complete) 
• Manchester (mid-June)

• Metallization in progress
• Bump bonding 

• ATLAS @IFAE
• CMS @Princeton

• Hope to be ready for 
June test beams  
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Summary

 Worked closely with manufacturers to increase quality
 Diamonds in the LHC machine making impact moving forward
 ATLAS/CMS -BCM, BLM, DBM will see collisions again soon

 Abort, luminosity and background functionality in all LHC expts
 First pixel project is about to start taking data again

 ATLAS DBM being re-commissioned for 13 TeV collisions
 3D detector prototypes made great progress 

 3D works in pCVD diamond; scale up worked; smaller cells worked
 Quantified understanding of rate effects in diamond

 pCVD shows no rate effect up to 10-20MHz/cm2

 3D diamond pixel devices being produced (1017/cm2)
 Efficiency looks good; PH in progress
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Backup Slides
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Device Development – BCM’
- abort threshold
- danger level, safety margin
- luminosity
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Abort and Luminosity Functions
Abort

• Require out-of-time and in-time signals above 
threshold signifying beam background at the danger 
Level

• Danger levels can be very high 
ATLAS SCT 25k/cm2/BC i.e. ~4000x lumi signal

• Need to keep flexibility for threshold settings

Luminosity
• Main algorithm: (absence of) in-time hits

Max sensitivity ~1.6 hits/cell
• Need robust device, signal stability paramount
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Present BCM suffers from abort-lumi incompatibility
• Abort thresholds can not be set higher without 

abandoning lumi
• Fast timing needed for abort lowers S/N thus limiting

lumi stability

Separate functions at the HL-LHC
• Two fast devices from sensor to off-detector
• Keep as much commonality as possible
• 4 stations/side with abort, lumi-BCM’, BLM
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Sensor Design

Tested @PSI last week with RD42 fast amp used for Rate Studies!
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Start with RD42 fast amp used in rate studies
• Designed in 130nm; will be updated to 65nm
• Rise time 3-6ns; Baseline recovery time 12-18ns
• Noise for 2pf input ~550e

ATLAS electronics ideas
• Two preamp designs since otherwise large dynamic

range (104) needed to cover lumi and abort in same 
channel

• High gain for lumi; low gain for abort.  Optimize gain
and speed vs SNR for lumi and abort separately

• Rise time ~few ns; return to baseline 10ns
• Tune parameters based on beam tests
• 16 channels (8/8 lumi/abort)
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Prototype test with 9.2 MHz/cm2 @PSI

- Bunches 19.8ns apart clearly separated
- Trigger is at 69ns
- Hits in bunch before trigger not allowed
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