Prototype Tests for a Highly Granular Scintillator-based Hadron Calorimeter

Yong Liu Johannes Gutenberg-Universität Mainz

on behalf of the CALICE Collaboration

May 23, 2017, Beijing, TIPP17

Highly granular calorimeters: motivations

- Highly granular calorimeters
 - Motivated by requirements from precision physics programs at future lepton colliders
 - Prerequisite for Particle Flow reconstruction
- Particle Flow
 - Separate energy depositions from close-by particles: high granularity is essential
 - Connecting information from all subdetectors
 - Charged particles measured in Tracker
 - Photons measured in Electromagnetic Calorimeter (ECAL)
 - Neutral hadrons measured in Hadronic Calorimeter (HCAL)
- To achieve excellent jet energy resolution
 - Goal at ILC: $\leq 30\%/\sqrt{E(GeV)}$ for di-jet energies in the order of ~100 GeV

M.A. Thomson: Nuclear Instruments and Methods A 611 (2009) 25-40

- Sandwich calorimeter based on scintillator tiles (3×3cm²) read out by Silicon Photomultipliers (SiPMs)
- Electronics fully integrated into active layers
- HCAL Base Unit (HBU): 144 channels (4 ASICs)

- Sandwich calorimeter based on scintillator tiles (3×3cm²) read out by Silicon Photomultipliers (SiPMs)
- Electronics fully integrated into active layers
- HCAL Base Unit (HBU): 144 channels (4 ASICs)

- Sandwich calorimeter based on scintillator tiles (3×3cm²) read out by Silicon Photomultipliers (SiPMs)
- Electronics fully integrated into active layers
- HCAL Base Unit (HBU): 144 channels (4 ASICs)

IG|U

- Challenges for mass assembly and data concentration

30×30×3 mm³

SMD-SiPM

IGIL

- AHCAL prototype (in **Fe** and **W** absorbers)
 - 14 layers (3744 channels) in total
 - 10 layers (shower start finder) + 4 large layers

 $\sim 1.5 \; \lambda \; / \; 15 \; X_0 \; *$

Δ

- AHCAL prototype (in **Fe** and **W** absorbers)
 - 14 layers (3744 channels) in total
 - 10 layers (shower start finder) + 4 large layers

 $\sim 1.5 \; \lambda \; / \; 15 \; X_0 \; *$

- AHCAL prototype (in **Fe** and **W** absorbers)
 - 14 layers (3744 channels) in total
 - 10 layers (shower start finder) + 4 large layers

 $\sim 1.5 \; \lambda \; / \; 15 \; X_0 \; *$

- AHCAL prototype (in **Fe** and **W** absorbers)
 - 14 layers (3744 channels) in total
 - 10 layers (shower start finder) + 4 large layers
- Data sets
 - Muons (180 GeV): calibration
 - Electrons (10-50 GeV): cross check
 - Pions (10-90 GeV): detailed shower studies

~ 1.5 \lambda / 15 X_0 *

Commissioning: LED calibration and MIP response

Commissioning: LED calibration and MIP response

5

]G|U

Commissioning: LED calibration and MIP response

Promising performance achieved: uniform gain and MIP response

Geant4 v10.01, Mokka v08-05-01

- Time reference: T0
 - Signal from trigger scintillator _
 - Obtained from muon data
- Muon: time resolution
 - Time of hits relative to T0 _

23.05.2017

Geant4 v10.01, Mokka v08-05-01

- Time reference: T0
 - Signal from trigger scintillator
 - Obtained from muon data
- Muon: time resolution

23.05.2017

- Time of hits relative to T0

Geant4 v10.01, Mokka v08-05-01

- Time reference: T0
 - Signal from trigger scintillator
 - Obtained from muon data
- Muon: time resolution
 - Time of hits relative to T0

Geant4 v10.01, Mokka v08-05-01

- Time reference: T0
 - Signal from trigger scintillator
 - Obtained from muon data
- Muon: time resolution
 - Time of hits relative to T0
 - MC tuned to describe the data
 - Similar results in steel and tungsten

23.05.2017

- Time calibration procedure established
 - Based on muon data/MC
- Ongoing analysis of electrons and pions

 $\sim 1.5 \; \lambda \; / \; 15 \; X_0 \; *$

Timing behavior of shower components (Reminder of T3B results)

JG|U

10⁻¹ # 10⁻²

10⁻³

10⁻⁴

10⁻⁶

- Time calibration procedure established
 - Based on muon data/MC
- Ongoing analysis of electrons and pions

Teaser: comparison of absorbers in MC

~ 1.5 \lambda / 15 X0 *

AHCAL Overview, TIPP17 (yong.liu@uni-mainz.de)

JG|U

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)
 - Tiles without WLS, side coupling
 - 2 layers, KETEK SiPMs (12k pixels)

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)
 - Tiles without WLS, side coupling
 - 2 layers, KETEK SiPMs (12k pixels)

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)
 - Tiles without WLS, side coupling
 - 2 layers, KETEK SiPMs (12k pixels)
 - Tiles wrapped with foil, side coupling
 - 4 large layers (16 HBUs), KETEK SiPMs (2.3k pixels); SenL SiPMs (1.3k pixels)

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)
 - Tiles without WLS, side coupling
 - 2 layers, KETEK SiPMs (12k pixels)
 - Tiles wrapped with foil, side coupling
 - 4 large layers (16 HBUs), KETEK SiPMs (2.3k pixels); SenL SiPMs (1.3k pixels)

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)
 - Tiles without WLS, side coupling
 - 2 layers, KETEK SiPMs (12k pixels)
 - Tiles wrapped with foil, side coupling
 - 4 large layers (16 HBUs), KETEK SiPMs (2.3k pixels); SenL SiPMs (1.3k pixels)
 - Tiles wrapped with foil, bottom coupling with surface-mounted SiPMs
 - 1 layer HPK SMD-MPPCs (1.6k pixels)

~ 1.5 λ / 15 X₀ *

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)
 - Tiles without WLS, side coupling
 - 2 layers, KETEK SiPMs (12k pixels)
 - Tiles wrapped with foil, side coupling
 - 4 large layers (16 HBUs), KETEK SiPMs (2.3k pixels); SenL SiPMs (1.3k pixels)
 - Tiles wrapped with foil, bottom coupling with surface-mounted SiPMs
 - 1 layer HPK SMD-MPPCs (1.6k pixels)

WLS

SiPM

23.05.2017

- Experience from beam tests is essential
 - To choose an option for construction of a fully equipped prototype (40 layers)
- Active layers with different designs
 - Tiles with wavelength shifting fiber (WLS):
 - 5 layers, CPTA SiPMs (800 pixels)
 - Tiles without WLS, side coupling
 - 2 layers, KETEK SiPMs (12k pixels)
 - Tiles wrapped with foil, side coupling
 - 4 large layers (16 HBUs), KETEK SiPMs (2.3k pixels); SenL SiPMs (1.3k pixels)
 - Tiles wrapped with foil, bottom coupling with surface-mounted SiPMs
 - 1 layer HPK SMD-MPPCs (1.6k pixels)

Only the <u>surface-mounted design</u> is suitable for mass assembly, which is crucial to demonstrate the scalability to build the final HCAL detector (~8M channels)

WLS

SiPM

The surface-mounted design has been adopted as a baseline design for the large AHCAL demonstrator

GIL

AHCAL mass assembly: from design to reality

- Surface-mount tile design
 - Electronics for surface-mounted SiPMs established (SMD-HBU)
 - 1st prototype board (144 channels) successfully built in 2014
 - Scintillator tiles individually wrapped

AHCAL mass assembly: from design to reality

- Surface-mount tile design
 - Electronics for surface-mounted SiPMs established (SMD-HBU)
 - 1st prototype board (144 channels) successfully built in 2014
 - Scintillator tiles individually wrapped

AHCAL Overview, TIPP17 (yong.liu@uni-mainz.de)

9

- Surface-mount tile design
 - <u>Baseline design</u> for the tech. prototype
 - 6 new SMD-HBUs assembled in 2016
 - New SiPMs with updated tile design

- Surface-mount tile design
 - Baseline design for the tech. prototype
 - 6 new SMD-HBUs assembled in 2016
 - New SiPMs with updated tile design •
 - 2017: ~170 new boards will be fully assembled and tested

- Surface-mount tile design
 - Baseline design for the tech. prototype
 - 6 new SMD-HBUs assembled in 2016
 - New SiPMs with updated tile design
 - 2017: ~170 new boards will be fully assembled and tested
- New generation of SiPMs
 - Reduced DCR and low inter-pixel crosstalk
 - Noise free in AHCAL
 - Improved uniformity (SiPM- and pixel-wise)

- Surface-mount tile design
 - Baseline design for the tech. prototype
 - 6 new SMD-HBUs assembled in 2016
 - New SiPMs with updated tile design
 - 2017: ~170 new boards will be fully assembled and tested
- New generation of SiPMs
 - Reduced DCR and low inter-pixel crosstalk
 - Noise free in AHCAL
 - Improved uniformity (SiPM- and pixel-wise)

AHCAL: a new small prototype

- Setup
 - A small prototype with all high-quality SiPMs
 - 15 layers, single HBU per layer;
 - 7 HBUs with SMD-SiPMs built via mass assembly: bottom coupling (baseline design)
 - 8 HBUs with high-quality SiPMs, side-surface coupling
 - New interface boards for all layers

AHCAL: a new small prototype

- Setup
 - A small prototype with all high-quality SiPMs
 - 15 layers, single HBU per layer;
 - 7 HBUs with SMD-SiPMs built via mass assembly: bottom coupling (baseline design)
 - 8 HBUs with high-quality SiPMs, side-surface coupling
 - New interface boards for all layers

AHCAL: a new small prototype

- Setup
 - A small prototype with all high-quality SiPMs
 - 15 layers, single HBU per layer;
 - 7 HBUs with SMD-SiPMs built via mass assembly: bottom coupling (baseline design)
 - 8 HBUs with high-quality SiPMs, side-surface coupling
 - New interface boards for all layers
- Aims
 - Precision measurements of EM showers
 - Power-pulsing mode: crucial for linear colliders
 - Temperature compensation for SiPMs

Commissioning and response to electrons

- Tested in DESY testbeam in 2016
 - 1~5 GeV electron beams
 - MIP calibration for all layers
 - EM shower data taken with/without power pulsing
 - Promising performance
 - All channels working: very uniform SiPM gain

Air stack for MIP calibration

IGIU

Commissioning and response to electrons

Air stack for MIP calibration

- Tested in DESY testbeam in 2016
 - 1~5 GeV electron beams
 - MIP calibration for all layers
 - EM shower data taken with/without power pulsing
- Promising performance
 - All channels working: very uniform SiPM gain
- Ongoing efforts
 - Performance w/wo power pulsing
 - SiPM: saturation correction, temperature compensation

IGIL

Commissioning and response to electrons

Air stack for MIP calibration

- Tested in DESY testbeam in 2016
 - 1~5 GeV electron beams
 - MIP calibration for all layers
 - EM shower data taken with/without power pulsing
- Promising performance
 - All channels working: very uniform SiPM gain
- Ongoing efforts
 - Performance w/wo power pulsing
 - SiPM: saturation correction, temperature compensation

Steel stack for EM shower studies

- New AHCAL readout boards (HBUs)
 - With updated ASIC chips (SPIROC2E) in new packages (BGA)

- New AHCAL readout boards (HBUs)
 - With updated ASIC chips (SPIROC2E) in new packages (BGA)

- New AHCAL readout boards (HBUs)
 - With updated ASIC chips (SPIROC2E) in new packages (BGA)
- New interface boards
 - Detector Interface (DIF) board: equipped with modern FPGA
 - Power board: reduced heat dissipation, optimized for power-pulsing, etc.

- New AHCAL readout boards (HBUs)
 - With updated ASIC chips (SPIROC2E) in new packages (BGA)
- New interface boards
 - Detector Interface (DIF) board: equipped with modern FPGA
 - Power board: reduced heat dissipation, optimized for power-pulsing, etc.

- New AHCAL readout boards (HBUs)
 - With updated ASIC chips (SPIROC2E) in new packages (BGA)
- New interface boards
 - Detector Interface (DIF) board: equipped with modern FPGA
 - Power board: reduced heat dissipation, optimized for power-pulsing, etc.

IGIL

- Goal: to instrument AHCAL technological prototype in a steel stack
 - Correspond to ~ 1% of barrel HCAL at ILC
 - Scalable to a full HCAL at ILC
 - 40 layers totally; 4 HBUs in each layer

- Goal: to instrument AHCAL technological prototype in a steel stack
 - Correspond to ~ 1% of barrel HCAL at ILC
 - Scalable to a full HCAL at ILC
 - 40 layers totally; 4 HBUs in each layer
 - Big step towards mass production & QA
 - Tile mass production via injection molding
 - Quality assurance: ASICs, SiPMs, HBUs

- Goal: to instrument AHCAL technological prototype in a steel stack
 - Correspond to ~ 1% of barrel HCAL at ILC
 - Scalable to a full HCAL at ILC
 - 40 layers totally; 4 HBUs in each layer
 - Big step towards mass production & QA
 - Tile mass production via injection molding
 - Quality assurance: ASICs, SiPMs, HBUs

- Goal: to instrument AHCAL technological prototype in a steel stack
 - Correspond to ~ 1% of barrel HCAL at ILC
 - Scalable to a full HCAL at ILC
 - 40 layers totally; 4 HBUs in each layer
 - Big step towards mass production & QA
 - Tile mass production via injection molding
 - Quality assurance: ASICs, SiPMs, HBUs

23.05.2017

- Goal: to instrument AHCAL technological prototype in a steel stack
 - Correspond to ~ 1% of barrel HCAL at ILC
 - Scalable to a full HCAL at ILC
 - 40 layers totally; 4 HBUs in each layer
 - Big step towards mass production & QA
 - Tile mass production via injection molding
 - Quality assurance: ASICs, SiPMs, HBUs

- Goal: to instrument AHCAL technological prototype in a steel stack
 - Correspond to ~ 1% of barrel HCAL at ILC
 - Scalable to a full HCAL at ILC
 - 40 layers totally; 4 HBUs in each layer
 - Big step towards mass production & QA
 - Tile mass production via injection molding
 - Quality assurance: ASICs, SiPMs, HBUs

Cosmic-ray test stand for HBUs

Summary and outlook

- CALICE collaboration is developing high-granularity calorimeters based on Particle-Flow paradigm
- Scintillator-based hadron calorimeter (AHCAL)
 - AHCAL technological prototype is being built
 - Baseline design chosen, suitable for mass assembly
 - Promising performance in beam tests
 - Automated test and assembly procedures established

Summary and outlook

- CALICE collaboration is developing high-granularity calorimeters based on Particle-Flow paradigm
- Scintillator-based hadron calorimeter (AHCAL)
 - AHCAL technological prototype is being built
 - Baseline design chosen, suitable for mass assembly
 - Promising performance in beam tests
 - Automated test and assembly procedures established
- 2017 and beyond
 - 160 boards (~23k SiPMs): scheduled to be built within 2017
 - Steady progress: mass assembly, electronics, DAQ, system integration, etc.
 - Beam test in 3T magnetic field at CERN SPS (May, 2017)
 - Beam tests with hadrons in 2018

Summary and outlook

- CALICE collaboration is developing high-granularity calorimeters based on Particle-Flow paradigm
- Scintillator-based hadron calorimeter (AHCAL)
 - AHCAL technological prototype is being built
 - Baseline design chosen, suitable for mass assembly
 - Promising performance in beam tests
 - Automated test and assembly procedures established
- 2017 and beyond
 - 160 boards (~23k SiPMs): scheduled to be built within 2017
 - Steady progress: mass assembly, electronics, DAQ, system integration, etc.
 - Beam test in 3T magnetic field at CERN SPS (May, 2017)
 - Beam tests with hadrons in 2018

Backup

The CALICE collaboration

- CALICE collaboration today
 - 55 institutes in 19 countries (4 continents)
 - ~ 350 members
- Goal
 - Research and development of highly granular calorimeters for future lepton colliders

- Technologies ۲
 - A rich program exploring full spectrum of imaging calorimeter technologies

https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome

23.05.2017

AHCAL Overview, TIPP17 (yong.liu@uni-mainz.de)

IGIU 17

The CALICE physics prototypes

Si-W ECAL

301ayers, 1x1 cm² cells

Sc-W ECAL

Sc-AHCAL, Fe&W

GRPC-SDHCAL, Fe

RPC-DHCAL, Fe&W

- Various beam tests
- Detector concepts validated with physics prototypes
- Large data sets for precision shower studies

Calorimeter granularity optimization

- Jet energy resolution versus the number of HCAL cells
 - Towards cost optimization
 - 3x3 cm² cell size is still a very reasonable choice: 8M cells

JGU