

Slow Liquid Scintillator for

Scintillation and Cherenkov Light Separation

Guo Ziyi

(for Jinping Neutrino Experiment group)

Department of Engineering Physics,

Tsinghua University

2017/05/23

Different neutrino detectors

Part I

Introduction of slow liquid scintillator in neutrino experiment

Water/Heavy water detector

Measuring both energy and direction.
Poor light yield and energy resolution.
High energy detection threshold.

Super Kamiokande

IMB

Different neutrino detectors

Part I

Introduction of slow liquid scintillator in neutrino experiment

Liquid scintillator detector

✓ Low detection threshold.
✓ High light yield and energy resolution.
× No direction information.

Double Chooz

Borexino

KamLAND

Part I

A new type of neutrino detector

Introduction of slow liquid scintillator in neutrino experiment

Energy window @ Jinping neutrino experiment: 1 ~ 20 MeV

A new type of neutrino detector

Introduction of slow liquid scintillator in neutrino experiment

Part |

Water Cherenkov detector for Jinping?

- Direction information is important for solar or supernova neutrinos detection
- Light yield ~ 150 photons/MeV (@300~600nm)

Liquid scintillator for Jinping?

- Light yield (~10000 photons/MeV) is adequate.
- Absorption and reemission of Cherenkov photons.
- Fast time constant.
- Hard to separate Cherenkov light and reconstruct the direction.

PE arrival times of a 20 m diameter sphere LS detector, simulated by Geant4.

A new type of neutrino detector

Part I

Introduction of slow liquid scintillator in neutrino experiment

Slow liquid scintillator detector! separate Cherenkov light and scintillation

- Suppress the absorption and reemission of Cherenkov light
- Lengthen the time constants
- Enhance the light yield

PE arrival times of a 20 m diameter sphere LAB detector, simulated by Geant4.

A new type of neutrino detector

Part I

Introduction of slow liquid scintillator in neutrino experiment

A muon Monte-Carlo event

Water

Slow LS

Part I

Introduction of slow liquid scintillator in neutrino experiment

A new type of neutrino detector

Particle Identification in LAB [1]

- Light yield ~1000 photons/MeV
- PMT quantum efficiency ~10%
- Optical attenuation
- Quenching effect

Number of Cherenkov photons 1000 electron gamma 800 muon proton 600 400 200 0 imes 100%150 $(\mathbf{C_i} - \mathbf{C_{\gamma, mean}}) / \mathbf{C_{\gamma, mean}}$ 100 50 0 -50 -100200 600 800 400 Number of Scintillation photons 70 90 30 50 60 80 Electron kinetic energy [MeV]

[1] Wei H, Wang Z, Chen S. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors[J]. Physics Letters B, 2017.

Candidates of slow liquid scintillator

Candidates of slow liquid scintillator

Linear alkyl benzene (LAB):

An important ingredient of slow liquid scintillator

- ✓ Non-flammable
- ✓ Non-toxic
- ✓ Favorable optical properties
- ✓ Low cost

 $(C_6H_5C_nH_{2n+1}, n: 10~16)$

LAB is now used in several neutrino detectors, such as RENO and Daya Bay.

Candidates of slow liquid scintillator

Candidates of slow liquid scintillator

Two candidates of slow liquid scintillator in this work:

- Candidate A: pure LAB (Linear alkyl benzene)
- Candidate B: 0.07 g/L PPO + 13 mg/L bis-MSB dissolved in LAB

2,5-Diphenyloxazole

1,4-Bis(2-methylstyryl) benzene

Candidate A

Candidate B

Water/Heavy water style

- ✓ Energy and direction information
- Poor light yield and energy resolution
- High energy detection threshold

Liquid scintillator style ★ No direction information ✓ High light yield and energy resolution ✓ Low detection threshold

Apparatus

Part II Candidates of slow liquid scintillator

Once a single vertically-going muon fly into the detector,

- 4 coincidence scintillators: trigger
- 2 anti-coincidence scintillators: no trigger
- Top PMT: scintillation
- Bottom PMT: both scintillation and Cherenkov light

Electronics readout waveform

Candidates of slow liquid scintillator

- A CAEN 10 bit 1 GHz flash ADC for waveforms readout.
- Focus on the waveforms of top and bottom PMT.

Candidate A:

Candidate B:

Time profile

Candidates of slow liquid scintillator

Fit function:

$$f(t)$$

= $[A_C \cdot \delta(t - t_0) + A_S \cdot n(t - t_0)]$
 $\otimes \text{gaus}(t)$

where n(t) is the scintillator time profile:

$$n(t) = \frac{\tau_r + \tau_d}{\tau_d^2} \left(1 - e^{t/\tau_r}\right) \cdot e^{t/\tau_d}$$

Candidate A:

$$\tau_r = (7.7 \pm 3.0) \text{ ns}$$

 $\tau_d = (36.6 \pm 2.4) \text{ ns}$

Candidate B:

 $\tau_r = (1.7 \pm 0.12) \text{ ns}$ $\tau_d = (26.6 \pm 0.19) \text{ ns}$

В

Α

Light yield

Part II Candidates of slow liquid scintillator

Light yield was estimated by

 $L = \frac{D}{\varepsilon E_{vis}}$

Number of photoelectrons, from waveform

Detection efficiency, from Monte-Carlo simulation Total visible energy deposit, from Monte-Carlo simulation

In detection efficiency estimation:

- Modified muon energy spectrum
- Quenching effect
- Quantum efficiency fluctuation
- Uncertainly of reflectivity of optical surface
- Attenuation length

A: $(1.01 \pm 0.12) \times 10^3$ photons/MeV B: $(3.39 \pm 0.44) \times 10^3$ photons/MeV

(preliminary result)

Emission spectrum

Candidates of slow liquid scintillator

- Measured by an RTI fluorescence spectrometer
- Excited at 260 nm.

Attenuation length

Candidates of slow liquid scintillator

Signal generator

- An LED on the top
- Adjust the liquid level
- Measure the charge integral on PMT
- Fit the relationship between liquid level and charge integral

Attenuation length

Fit result of candidate B

 The LED is not monochromatic, the intensity of light should be the weighted average of LED spectrum,

 $I(x) = I_0 \int f(\lambda) e^{-x/L(\lambda)} d\lambda$

- Try to use a two exponential formula $I = I_1 e^{-x/L_1} + I_2 e^{-x/L_2}$
- *I*₁: long wavelength component *I*₂: short wavelength component
 Fit result indicates that long wavelength
 component domains.

A: (19.52 ± 0.39) m B: (9.37 ± 0.44) m

Summary and outlook

Two candidates of slow liquid scintillator in this work:

- Candidate A: pure LAB
- Candidate B: 0.07 g/L PPO + 13 mg/L bis-MSB dissolved in LAB

	Rising time constant (ns)	Decay time constant (ns)	Light yield (photons/MeV)	Attenuation length (m)
Candidate A	7.7 ± 3.0	36.6 ± 2.4	$(1.01 \pm 0.12) \times 10^3$	19.52 <u>+</u> 0.39
Candidate B	1.7 ± 0.1	26.6 ± 0.2	$(3.39 \pm 0.44) \times 10^3$	9.37 <u>+</u> 0.44

- PPO and bis-MSB result in the absorption and reemission of Cherenkov light, the should be tested carefully.
- Research more slow LS candidates in the future.
- A monochromatic light source is necessary for a precise attenuation length measurement.
- The attenuation length should be increased for a kiloton scale detector.

Opportunity: Discovery potential for supernova relic neutrinos [1]

- Suppress atmosphere neutrino CC and NC backgrounds by particle identification
- Enough sensitivity to make a discovery of super nova relic neutrinos @ kilotonscale LAB detector at Jinping

[1] Wei H, Wang Z, Chen S. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors[J]. Physics Letters B, 2017.

Opportunity of slow liquid scintillator

Opportunity: Double-beta decay experiment [2]

 Discriminate ⁸B solar neutrino background events from 0vββ decay events by spherical harmonics analysis

[2] Elagin A, Frisch H J, Naranjo B, et al. Separating double-beta decay events from solar neutrino interactions in a kiloton-scale liquid scintillator detector by fast timing[J]. NIMA, 2017, 849: 102-111.

END

THANKS

