The Barrel DIRC Detector for the PANDA Experiment at FAIR

TIPP 2017 conference

Roman Dzyhagdlo (GSI) for the PANDA Cherenkov Group

- PANDA experiment
- Barrel DIRC design
- Expected performance
- Validation in beam tests
- Summary & outlook

The PANDA Cherenkov Group:
The PANDA Experiment at FAIR

Facility for Antiproton and Ion Research at GSI near Darmstadt, Germany

- FAIR Accelerator Complex
- PANDA Experiment
- Barrel DIRC Detector

- High Energy Storage Ring
- 5×10^{10} stored cooled antiprotons
- 1.5 to 15 GeV/c momentum
- Cluster jet / pellet target
- High luminosity mode
 $\Delta p/p \approx 10^{-4}$ (stochastic cooling)
 $L = 1.6 \times 10^{32}$ cm$^{-2}$s$^{-1}$
- High resolution mode
 $\Delta p/p \approx 5 \times 10^{-5}$ (electron cooling)
 $L = 1.6 \times 10^{31}$ cm$^{-2}$s$^{-1}$
PANDA Physics Program

Study of QCD with Antiprotons
PANDA Physics Program

Study of QCD with Antiprotons

Non-perturbative QCD
Hypernuclei
Precision Hadron Spectroscopy
Exotic States (Glueballs, Hybrids)
In-Medium Modifications
Nucleon Structure
DIRCs in PANDA

Two DIRC detectors for hadronic PID:

- **Barrel DIRC**
 - German in-kind contribution to PANDA
 - Goal: 3 s.d. π/K separation up to 3.5 GeV/c

- **Endcap Disc DIRC**
 - Goal: 4 s.d. π/K separation up to 4 GeV/c

EvtGen kaon phase space example
antiproton momentum: 7 GeV/c

Endcap Disc DIRC for PANDA at FAIR
Mustafa SCHMIDT, 23.05
R1, Particle identification
Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector
based on total internal reflection of Cherenkov light.
DIRC Principle

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHERenkov detector based on total internal reflection of Cherenkov light.

- Charged particle traversing radiator with refractive index \(n_1 \approx 1.47 \) and \(\beta = v/c > 1/n \) emits Cherenkov photons on cone with half opening angle \(\cos \theta_c = 1/\beta n(\lambda) \).
Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light.

- Charged particle traversing radiator with refractive index \(n_1 \approx 1.47 \) and \(\beta = v/c > 1/n \) emits Cherenkov photons on cone with half opening angle \(\cos \theta_c = 1/\beta n(\lambda) \).
DIRC Principle

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light.

- **Charged particle** traversing radiator with refractive index \(n_1 \approx 1.47 \) and \(\beta = \frac{v}{c} > \frac{1}{n} \) emits **Cherenkov photons** on cone with half opening angle \(\cos \theta_c = \frac{1}{\beta n(\lambda)} \).

![Diagram of Cherenkov effect with charged particle traversing radiator](image)
Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light.

- Charged particle traversing radiator with refractive index \(n_1 \approx 1.47 \) and \(\beta = v/c > 1/n \) emits Cherenkov photons on cone with half opening angle \(\cos \theta_c = 1/\beta n(\lambda) \).

- Some photons are always totally internally reflected for \(\beta \approx 1 \) tracks.
DIRC Principle

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light.

- Charged particle traversing radiator with refractive index \(n_1 \approx 1.47\) and \(\beta = v/c > 1/n\) emits Cherenkov photons on cone with half opening angle \(\cos \theta_c = 1/\beta n(\lambda)\).

- Some photons are always totally internally reflected for \(\beta\approx1\) tracks.

- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica (“Quartz”).
DIRC Principle

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light.

- **Charged particle** traversing radiator with refractive index \(n_1 \approx 1.47\) and \(\beta = v/c > 1/n\) emits **Cherenkov photons** on cone with half opening angle \(\cos \theta_c = 1/\beta n(\lambda)\).

- Some photons are always **totally internally reflected** for \(\beta \approx 1\) tracks.

- **Radiator and light guide**: polished, long rectangular bar made from **Synthetic Fused Silica** (“Quartz”).

- Proven to work (BABAR-DIRC).
Barrel DIRC Baseline Design

Based on BABAR DIRC with key improvements

- **compact fused silica prisms, spherical lenses**

- 48 radiator bars (16 sectors), synthetic fused silica 17mm (T) x 53mm (W) x 2400mm (L)

- **Focusing optics**: triplet spherical lens system

- **Compact expansion volume**: 30cm-deep solid fused silica prisms ~11,000 channels of MCP-PMTs

- **Fast FPGA-based photon detection**: ~100ps per photon timing resolution

- **Expected performance (simulation and particle beams)**: better than 3 s.d. π/K separation for entire acceptance
Barrel DIRC Baseline Design

Based on BABAR DIRC with key improvements

(expected fused silica prisms, spherical lenses)

- 48 radiator bars (16 sectors), synthetic fused silica
 17mm (T) x 53mm (W) x 2400mm (L)
- **Focusing optics**: triplet spherical lens system
- **Compact expansion volume**:
 30cm-deep solid fused silical prisms
 ~11,000 channels of MCP-PMTs
- **Fast FPGA-based photon detection**
 ~100ps per photon timing resolution
- **Expected performance (simulation and particle beams)**:
 better than 3 s.d. π/K separation for entire acceptance

Conservative design: similar to BABAR DIRC, baseline design for TDR
Excellent performance, robust, little sensitivity to backgrounds and timing deterioration
Barrel DIRC Cost-Saving Design

Replacing 3 bars/bar box with 1 wide plate saves significant fabrication costs

- 16 radiator plates (16 sectors), synthetic fused silica (*instead of 48 narrow bars*)
 17mm (T) x 160mm (W) x 2400mm (L)

- **Focusing optics:** cylindrical lens system

- **Expansion volume and readout same as baseline**

- **Expected performance (simulation and particle beams):**
 better than 3 s.d. π/K separation for entire acceptance

- Included in TDR as design option
Barrel DIRC Cost-Saving Design

Replacing 3 bars/bar box with 1 wide plate saves significant fabrication costs

- 16 radiator plates (16 sectors), synthetic fused silica (*instead of 48 narrow bars*)
 17mm (T) x 160mm (W) x 2400mm (L)

- **Focusing optics**: cylindrical lens system

- **Expansion volume and readout same as baseline**

- **Expected performance (simulation and particle beams)**: better than 3 s.d. π/K separation for entire acceptance

- Included in TDR as design option

Wide plate design would reduce cost – but it is no longer a “BABAR-like” DIRC

Belle II TOP counter uses wide plates (450mm), completed installation in May 2016
May expect similar performance (TOP goal: 3 s.d. π/K up to 4 GeV/c)
Expected Performance

Reconstruction method:
- Geometrical (BABAR-like)
- Time imaging (Belle II TOP-like)

Geometrical reconstruction:

Cherenkov track resolution:

\[
\sigma_{\theta_C}^{\text{track}} = \sqrt{\left(\frac{\sigma_{\theta_C}^{\text{photon}}}{\sqrt{N_{\text{photons}}}}\right)^2 + \left(\sigma_{\text{correlated}}^{\text{tracking}}\right)^2}
\]

tracking resolution 2-3 mrad

Photon yield

GEANT simulation
Baseline design,
3 bars per bar box,
3-layer spherical lens

Single Photon Cherenkov angle resolution (SPR)
Expected Performance

Reconstruction method:
- Geometrical (BABAR-like)
- Time imaging (Belle II TOP-like)

Geometrical reconstruction:

Cherenkov track resolution:

\[\sigma_{\theta_c}^{\text{track}} = \sqrt{\left(\frac{\sigma_{\theta_c}^{\text{photon}}}{\sqrt{N_{\text{photons}}}} \right)^2 + \sigma_{\text{correlated}}^2} \]

tracking resolution 2-3 mrad

Photon yield

Single Photon Cherenkov angle resolution (SPR)

Yield and SPR reach performance goal
Expected Performance

Baseline design with geometrical reconstruction

\[N_{\text{sep}} = \frac{|\mu_1 - \mu_2|}{0.5(\sigma_1 + \sigma_2)} \]
Expected Performance

Baseline design with geometrical reconstruction

\[N_{\text{sep}} = \frac{|\mu_1 - \mu_2|}{0.5(\sigma_1 + \sigma_2)} \]

Geant simulation
(green color \(\sim 3\) s.d. separation)
Expected Performance

Baseline design with geometrical reconstruction

\[N_{\text{sep}} = \frac{|\mu_1 - \mu_2|}{0.5(\sigma_1 + \sigma_2)} \]

Geant simulation (green color ~ 3 s.d. separation)

from earlier: kaon phase space for 7 GeV/c

Barrel DIRC PID 3 s.d. goal
Expected Performance

Baseline design with geometrical reconstruction

\[N_{sep} = \frac{|\mu_1 - \mu_2|}{0.5(\sigma_1 + \sigma_2)} \]

Geant simulation (green color ~ 3 s.d. separation)

Baseline design meets or exceeds PID requirements

Track-by-track max. likelihood fit

from earlier:
kaon phase space for 7 GeV/c

Barrel DIRC PID 3 s.d. goal

TIPP'17, May 23, Beijing

Roman Dzhygadlo 9/17
Expected Performance

Time imaging reconstruction

Baseline design (narrow bars) Cost-saving design (wide plates)
Expected Performance

Both designs meet or exceed PID requirements for entire acceptance range

Baseline design (narrow bars)

Cost-saving design (wide plates)
Key components

- Radiators
 ~30 bars/plates produced by 8 companies
 (AOS/Okamoto, InSync, Nikon, Zeiss, Zygo; Heraeus, Lytkarino LZOS, Schott Lithotec)

- Several solid fused silica prism prototypes (30° - 45° top angle) built by industry

- Focusing system
 Designed several spherical and cylindrical lenses, with and without air gap, several prototypes built by industry

- Micro-channel Plate Photomultipliers (MCP-PMTs)
 excellent timing and magnetic field performance
 used to have issues with rate capability and aging, now solved; sensors of choice for Belle II TOP, LHCb TORCH, PANDA DIRCs
Readout and Mechanical Design

Readout Electronics

~100ps timing per photon for small MCP-PMT pulses – amplification and bandwidth optimization

20MHz average interaction, trigger-less DAQ

Current approach: HADES TRBv3 board with PADIWA amplifier/discriminator

Near future: DiRICH, integrated backplane, joint development with HADES/CBM RICH

Mechanical Design

Light-weight and modular, allows staged bar box installation, access to inner detectors

Mechanical support elements made from aluminum alloy or carbon fiber (CFRP)

Boil-off nitrogen flush for optical surfaces
Beam Test at CERN 2015

- Fused silica prism as expansion volume
- 5 x 3 array of Planacon MCP-PMTs
- Narrow bar as radiator
- Many different imaging/lens configurations
- Momentum and angle scans
- ~500M triggers during 34 days of data taking

Goal: validation of PID performance of baseline design (narrow bars)
Beam Test at CERN 2015: Narrow Bar

- **Goal:** validate PANDA Barrel DIRC design and test components for DIRC@EIC
- **Narrow bar (17x32x1250 mm³)**
- Fused silica prism
- Focusing with 3-layer spherical lens
- ~200 ps time resolution

Geometrical reconstruction:

- Cherenkov angle per track

Time imaging:

- Log-likelihood difference

$\theta_{\text{track}} = 25^\circ$

- beam data
- fit to the data
- $\sigma = 2.5$ mrad
- fit to the sim
- $\sigma = 2.2$ mrad

~ 3.4 s.d. $\pi/K @ 3.5$ GeV/c

- pions
- protons

~ 3.6 s.d. $\pi/K @ 3.5$ GeV/c
Beam Test at CERN 2016: Wide Plate

- Goal: validate plate as cost saving option for PANDA Barrel DIRC and DIRC@EIC
- Plate (17x175x1225 mm³)
- Fused silica prism
- Focusing with 2-layer cylindrical lens
- ∼200 ps time resolution

Hit patterns, proton tag:

Time imaging:

∼3.2 s.d. π/K @ 3.5 GeV/c
Summary and Status

- The PANDA Barrel DIRC is a key component of the PANDA PID system
 - Simulations predict 3 s.d. π/K separation up to 3.5 GeV/c
 - Successfully validated PID performance in particle beams
 - Technical Design Report currently in review

- Design with narrow bars and 3-layer spherical lens meets or exceeds the PANDA PID requirements
 - Simulation and PID performance validated with particle beams (CERN 2015)

- Cost-saving design with wide plates and 3-layer cylindrical lens also exceeds PANDA PID performance
 - Simulation and PID performance validated with particle beams (CERN 2016)

- PID performance of narrow bars superior to wide plates
 - More robust in terms of background and timing resolution
 - baseline design for PANDA Barrel DIRC
Outlook

2017-2023: Component Fabrication, Assembly, Installation

- 2017: TDR approval, prepare for tender process
- 2018-2020: Industrial fabrication of fused silica bars and prisms
 Industrial production of MCP-PMTs
- 2018-2019: Production and QA of readout electronics
- 2018-2022: Industrial fabrication of bar containers and mechanical support frame,
 gluing of bars/plates, construction of complete bar boxes
 Detailed scans of all sensors
 Assembly of readout units
- 2023: Installation of mechanical support frame in PANDA,
 insert bar boxes, mount readout modules
Outlook

2017-2023: Component Fabrication, Assembly, Installation

- 2017: TDR approval, prepare for tender process
- 2018-2020: Industrial fabrication of fused silica bars and prisms, industrial production of MCP-PMTs
- 2018-2019: Production and QA of readout electronics
- 2018-2022: Industrial fabrication of bar containers and mechanical support frame, gluing of bars/plates, construction of complete bar boxes, detailed scans of all sensors, assembly of readout units
- 2023: Installation of mechanical support frame in PANDA, insert bar boxes, mount readout modules

Thank you for the attention
Backup slides
Simulation and Reconstruction

- Event generation
- Particle transport
- Digitization
- Hit Finder
- Reconstruction

Gean3, Geant4

Geometry/material

- MCP-PMT
- Eljen EJ-550 optical grease
- Epotek 301-2 glue
- Front-coated mirror
- Expansion volume (Tank/Prism)
- Focusing (different lenses)
- Radiator (narrow bars/plate)
Geometrical Reconstruction

- **Reconstruction**: direction from LUT for hit pixels are combined with charge track direction

Number of photons: 12

\[
\chi^2 / \text{ndf} \quad 21.55 / 62
\]
\[
\theta_c \quad 0.7995 \pm 0.0026
\]
\[
\sigma \quad 0.0137 \pm 0.0016
\]
Time Likelihood Imaging

- **Reconstruction**: arrival time of each photon from given track is compared with PDF to calculate time-based likelihood for the photon to originate from a given particle.

Example: momentum = 3 GeV/c, angle = 22°

- Full likelihood:

\[L_H = \prod_{N} \text{pdf}(x_i, y_i, t_i; H) \times P_{N_0}(N) \]

- Clean π/K separation at 3.5 GeV/c even without optics.