A Improved Self-Stretching GEM Assembly Technique
— Sliding Self-Stretching

Yi Zhou, Wenhao You, Jianbei Liu, Ming Shao
State Key Laboratory of Particle Detection and Electronics, China
University of Science and Technology of China

TIPP2017
Beijing, China
May. 23, 2017
Outline

• Introduction
• Self-stretching technique
• Self-stretching R&D at USTC
• Sliding self-stretching
• Summary
Introduction

• Gas Electron Multiplier (GEM) is one of the most popular micro-pattern gaseous detectors

• Advantages of GEM detectors
 – High rate capability (up to 1MHz/cm²)
 – Good position resolution (~100μm)
 – Low mass and low cost
Large-size GEM

• A low-mass and cost-effective solution to high-precision and large-area tracking at high-rate and large-scale experiments such as CMS and SoLID.

 – Key: large-size (~1 m²) GEM assembly
Assembly time for one chamber ~ 1 week! And impossible to reopen for repairs. Have to find an alternative technique.
Self-Stretching Assembly

- A purely mechanical GEM assembly technique developed at CERN for the CMS GEM upgrade project.

 - No gluing, assembly easy and fast, highly efficient and labor saving
 - No inner spacers, no dead areas, smooth gas flow
 - Complete re-opening possible, full detector re-cleaning possible, highly replaceable and repairable, reduced cost
Self-Stretching R&D

• Intensive R&D on self-stretching technique by 30cm*30cm GEM prototyping.
• Modifications and improvements to original self-stretching.
GEM X-ray Test

- X-Ray
- GEM
- Pre-Amplifier
- Shaper1
- Disc.
- Scalor
- Shaper2
- HV
- Pico-ammeter
- MCA
• Clear exponential dependence of gain on high voltage
• Can reach a gain of 10^4 at 4000V
Response Uniformity

Gain in different sectors

Energy resolution in different sectors

Uniformity ~ 11%

Resolution <20% @ 8 keV, Uniformity ~ 5.3%

Good uniformity observed

Note: uniformity = RMS/Mean
Going for Larger Size

• Assembling an 0.5m*1m GEM with self-stretching technique.
Uniformity in Large Area

0.5m*1m: 51% v.s. 30cm*30cm: 11%

- The uniformity of the 0.5m*1m GEM is much worse than that of the 30cm*30cm GEMs.
Issues with Self-Stretching

Stretching screws are locked by outside frame when inner frame moves following GEM foil displacement due to tension. The locked screws would also have O rings stressed too much causing gas leaks.
GEM Stretching Simulation

- Simulated displacement of stretched triple GEM foils (0.5m*1m) with HV applied.

- Maximum GEM displacement ~ 150um when tensioned at ~0.3kg/cm per GEM
- Tensioning more doesn’t help too much in further reducing displacement.
GEM Stretching Measurement

Tensions applied to GEM:
- ~0.48kg/cm @ long side
- ~0.39kg/cm @ short side

GEM extension:
- ~2.5 mm @ long side
- ~1.0 mm @ short side

Valuable input in GEM tension determination
Improving Self-Stretching

• Lots of effort put in optimizing the design of the 1m*0.5m self-stretched GEM:
 – Reinforced supporting frames
 – Segmented GEM clamping ➔ sliding self-stretching
A Close-up of Sliding Self-Stretching

GEM foils can now move freely up to 5mm with respect to the main frame.
Sliding Self-Stretched GEM

• High quality GEM stretching with no visual wrinkles.
• Very good gain uniformity ~ 15%, comparable to 30 cm x 30 cm!
2D X-ray Imaging
Summary

• Active R&D on self-stretching GEM assembly at USTC in the past few years.
• Improved the original self-stretching technique by segmenting GEM foil clamping to allow room for GEM displacement
 – sliding self-stretching
• Built a 0.5m*1m GEM prototype with sliding self-stretching technique
 • Very good uniformity over large area
MPGD lab @ USTC

- Central gas supply
- A class-10000 clean room
- A general-purpose work station and a large-area regular work bench
- Three detector testing areas