TIPP 2017, Beijing, May 2017

Ulrich Uwer Heidelberg University Germany

SPONSORED BY THE

Federal Ministry of Education and Research

on behalf of the LHC SciFi Collaboration:

LHCb Detector Upgrade

LHCb detector upgrade during LHC LS2 (2019-2020)

Goal: increase statistics by more than ×10

- Operate at $2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow 50 \text{ fb}^{-1}$
- triggerless 40 MHz readout

 $\overline{\mathbf{v}}$

- full software trigger
- 40 MHz readout electronics: replacement of RICH photo detectors
- New tracking system:
 - \circ Vertex detector Si strips \rightarrow pixels
 - \circ TT Si strips \rightarrow new Si strip detector
 - Inner (Si) and Outer (straws) Tracker → Novel Scintillating Fibre Tracker

fast, high efficiency (~99%) high granularity (250 μ m), high spatial resolution (<100 μ m), light (<1% X₀ /layer), up to 35 kGy

SciFi – Overview

128 modules (0.5 x 5 m²) arranged in 3 stations × 4 layers (XUVX)

11,000 km of fibres, 524k channels

Goal: <100 μ m resolution over a total active surface of ~ 340 m²

SciFi – Overview

128 modules (0.5 x 5 m²) arranged in 3 stations × 4 layers (XUVX)

Light yield for 6-layer mat: 16–20 photo-electrons (for particles near mat mirror)

11,000 km of fibres, 524k channels

Goal: <100 μ m resolution over a total active surface of ~ 340 m²

Scintillating Fibre

Kuraray SCSF-78

Fibre Quality Assurance

Kuraray SCSF-78

Fibre scanner, LHCb-PUB-2015-009

- All fibre spools scanned for mechanical defects and irregularities (so far ~6000 km scanned).
- We observe "bumps" = local increase of diameter.
- Bumps >350 μm (typ. ~8 per 12500 m) produce irregularities in winding pattern and must be removed.
- Automatic bump shrinkage using a "hot drawing" tool. Applied routinely.

LHCb-PUB-2016-010

Fibre Mat Production

Custom winding machine using a threaded wheel

Mat dimension: L x W x H = 2424.0 x 130.6 x 1.4 mm

Kapton lamination for mechanical stability

Mat production at 4 sites (1 mat/6 hours) >25% of mats already produced

Glue filled holes on

wheel used to create

Module production

- 8 fibre mats assembled into a module
- Support panels (200g / m² carbon fibre tissue + 20 mm Nomex core).
- material budget: 1.1 % X₀ / module
- Alignment of mats w/r to straight line better than 50 μm over length of 5 m
 - alignment pins in precision template

Silicon Photomultiplier

Hamamatsu, H2016-HRQ

photomultiplier arrays for the LHCb Scintillating Fibre Tracker Upgrade, Axel KUONEN, TIPP 2017

SiPM Cooling and Alignment - Coldbox

Coldbox 3D printed Ti cooling bar, carry/align 16 SiPMs

SiPM on flex print

- Cold box (3D printed nylon) at each end of fibre module; houses 16 SiPMs at -40°C, aligned and in optical contact to fibre ends.
- **Challenges:** thermal insulation, humidity management inside box (total length 130m)
- Pre-series under production.

Electronics Readout

SciFi (528k channels) – 4096 GBT links (max. 2.3 TB/s)

Electronics Readout

SciFi (528k channels) - 4096 GBT links (max. 2.3 TB/s)

Clusterization

PACIFICr4 ASIC

<u>A readout ASIC for the LHCb</u> <u>Scintillating Fibre (SciFi)</u> <u>tracker</u>, **X. HAN at TIPP 2017**

<u>Clustering = key to noise / data reduction:</u> Dark count rate w/ 6×10¹¹ n_{eq} / cm² ~14 MHz / channel

cluster rate 0.8 MHz / 128 channels calculate x-position of clusters

Test beam results using PACIFICr4

Measurements at DESY beamline T22 (Feb 2017) 1...6 GeV electrons (max. beam intensity @ 2 GeV)

Efficiency:

- analysis of recent test beam data on-going
 from earlier test beam campaigns (w/ SPIROC readout):
 - we expect 99% hit efficiency at reference thresholds LHCb-PUB-2015-025

Mechanics and Services

Services: Novec (649) cooling (SiPMs), water-cooling, LV/HV, opti. fibres

- The LHCb Scintillating Fibre Tracker is a high-resolution detector covering an area of 340 m².
- It is based on \varnothing 250 μm scintillating fibres, read-out with SiPMs
- Nominal performance parameters have been achieved in test beam measurements: <100µm resolution, 99% hit efficiency.
- The detector construction is well advanced (>25% of fiber mats, ~15% of modules already produced)
- Installation of the detector foreseen for 2019 2020 (LS2)

SPONSORED BY THE

Federal Ministry of Education and Research