The Silicon Micro-strip Upstream Tracker for the LHCb Upgrade

Carlos Abellan on behalf of the UT collaboration

Beijing, 23th May 2017
Presentation Outline

• The UT detector

• SALT ASIC

• Flex cables

• Infrastructure

• Conclusions
The UT detector

- Sensor Box
- Instrumented Staves
- LV regulators
- PEPI electronics
- Low mass staves
- Hybrids on both sides (full coverage)
- μStrip detector
- 4 Si planes
- 4 Si planes
• Silicon Sensors

Key technical aspects:

• D type sensors:
 • Circular cut-out to maximize acceptance next to beam pipe

• A type sensors:
 • Built-in pitch adapters (190um to 80um)

• Top-side biasing via wire bonds rather than conductive glue to backplane
The SALT ASIC

- SALT128 ASIC prototype done and tested

- 128 channel
- 130nm TSMC ASIC
- Fast shaping time/return to baseline
- 6 bit embedded ADC
- DSP:
 - Pedestal subtraction
 - Zero suppression
 - e-link data formatting
- On-chip memory
- SLVS e-links (up to 6, typically 3 active)
The first UT Module

• First Hybrid produced with current prototype version
• This allows us to make a slice test
SALT test infrastructure

• Slice test
SALT ASIC: Digital

- Digital functions mostly tested to work as intended (PLL, DLL, I2C, ser, TFC, data packaging,...)
- Pedestal and CM subtraction work exactly as offline simulated
- A new prototype is being designed:
 - Small issue with the ADC sync. with the readout
 - Improvement: saturating logic for computations
SALT ASIC: Analog

• Analog results
 • Version 1 SALT128 works generally as designed. A calibration DAC can be used to align the baseline of all channels. In a test with a laser beam the pulse shapes are as expected in the channel that receives signal and its adjacent channels. Note the fast baseline return with our novel shaper stage.
 • However, there are issues in this version that will be fixed in a newer prototype.
SALT TID tests

- TID test also performed to see current consumption variation

X-Rays
Tested up to 20Mrad
Rate: 0.45Mrad/h
Annealing monitor: 12h

Thanks to Glasgow colleagues for their help!
SALT TID tests

0.- Warm up for 12h
1.- Turn the X-Ray tube on without changing anything else
2.- Wait 44.4h (0.45Mrad/h → 20Mrad total)
3.- Turn the X-Ray tube off without changing anything else
The flex cables

- Two pieces: flex tape and pigtails

Common features:
- 120 differential pairs (100Ω diff)
- 6x clocks 40MHz
- 6x TFC 320Mbps
- 6x I2C signal sets 100Kbps
- 78x data lines @ 320Mbps
- Thermistors and others
- 6 power rails handling 2A each
- 35μm copper layers
- < 1 Ω total round-trip
- Flex
 - 4 High voltage power lanes
 - Sensor biasing <500V
 - Minimal material budget
 - 80 cm total length
- Pigtail
 - Narrower by almost 50%
 - 23 mm bending radius
 - 55 cm total length
The flex cables

- Tested as a single piece

320Mbps PRBS Generator

Signal DC resistance:
- Measured: 22 Ω roundtrip
- Target: 10 Ω roundtrip

Over-etching!
We get signal attenuation...
Infrastructure

- Low voltage power regulation
 - Cable management very relevant! 490x 25mm diameter cables

Standard Cold plate
Conclusions

• SALT ASIC:
 • The digital communication works even when using the flex cable. Single ended I2C works even with common mode.
 • Digital performance has minor synchronization issues. Analog performance needs some improvements
 • We see no crosstalk between ASICs even when using a flex cable
 • The ASIC reacts well to the total ionization dose: there is around 3% power consumption variation only
 • A new version of the ASIC is ongoing. It should solve the issues we measured.

• Flex Cables
 • Prototypes are produced and perform well
 • Digital transmission lines have some more resistance than planned. Slice tests prove we can live with it. We are trying to improve it anyway.
 − Now facing production and testing procedures: discussion about pricing, manufacturability improvement, test procedure, etc...

• Infrastructure
 • The design of the low voltage infrastructure is quite advanced
 • We need to see how to manage all the cables we have: they have a big cross section that we have to see how to input to the PEPI area
 • We plan to produce some prototypes to have real tests
 • Summarizing: the project progresses in all aspects. The ASIC requires some extra refinements in its performance, but our team is working on it.