supernemo

The NEMO-3 and SuperNEMO experiments

M. Cascella (for the NEMO-3 and SuperNEMO collaborations)

TIPP2017

Introduction

- Double beta and neutrinoless double beta decay
- NEMO-3 results
- SuperNEMO demonstrator module

Double ß decay

Neutrinoless double β decay

u

u

- If neutrinos are Majorana fermions 0v2β is allowed
- electrons~few MeV

 $U_{ek}-$

 $m_k \rightarrow$

 U_{ek}

 u_k

ж

d

d

Why is 0v2β interesting?

- Lepton number violation
- New physics
- Neutrino mass and mass ordering

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 |m_{\beta\beta}|^2$$

NEMO-3

NEMO design principles

- Source independent from detector
- Compromise between calorimeter resolution / tracking
- Topological information, timing and particle tagging
 - Background suppression and BSM decays

NEMO-3

- Active from 2003 to 2011
- Hosted in Frejus tunnel (1700m, 4800 w.e.m. 10⁻⁶x cosmics)
- 7x 2β and several calibration sources

1.Source strips

1.Source strips

2.3D tracking multiwire Geiger cells

- **1.Source strips**
- 2.3D tracking multiwire Geiger cells

3.PS scintillator with low activity PMTs

- **1.Source strips**
- 2.3D tracking multiwire Geiger cells
- 3.PS scintillator with low activity PMTs

4.Cu/Fe frame

Bismuth and Radon

• Tracker essential in rejecting background

238_T

₽₽₽₽

²²²Rn `IJ

²¹⁴Bi

(19.9 min)

 α 0.02 %

 $^{210}T^{-1}$

(1.3 min)

- Internal contaminations
- External radiation
- ${}^{214}\text{Bi} (Q_{\beta} = 3.3 \text{ MeV})$
 - a tagging

150Nd

- Large $Q_{\beta\beta} = 3.4$ MeV and phase space (36.6 g of isotope)
- BDT using 10 kinematic variables
- Quadruple beta decay search

$$\begin{split} T_{1/2}^{0\nu\beta\beta} &> 2.0\times 10^{22}\,\mathrm{yr}\,(90\%\,\mathrm{C.L.}) \\ T_{1/2}^{2\nu} &= \left[9.34\,\pm 0.22\,(\mathrm{stat.})\,^{+0.62}_{-0.60}(\mathrm{syst.})\right]\times 10^{18}\,\mathrm{yr} \end{split}$$

• Phys. Rev. D 94 072003

<u>ش</u>

- highest $Q_{\beta\beta} = 4.3 \text{ MeV}$
- 7g of isotope
 (~300 2v2β events)

 $T_{1/2}^{2\nu} = [6.4^{+0.7}_{-0.6}(\text{stat.})^{+1.2}_{-0.9}(\text{syst.})] \times 10^{19} \,\text{yr}$

• Phys. Rev. D 93, 112008

MO-3 - ⁴⁸Ca - 7 g, 5.25 y

SuperNEMO

SuperNEMO

NEMO-3		SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se (or ¹⁵⁰ Nd)
7 kg	isotope mass	7 (demonstrator) → 100 kg
5 mBq/m ³	radon	0.15 mBq/m ³
²⁰⁸ TI: 100 μBq/kg ²¹⁴ Bi: 300 μBq/kg	internal contamination	²⁰⁸ TI ≤ 2 µBq/kg ²¹⁴ Bi ≤ 10 µBq/kg
14% @ 1 MeV	Calorimeter	8% @ 1 MeV

14

- Next gen demonstrator
- Modular design
- Better hermeticity

The SuperNEMO tracker

 Restricted materials: copper, steel, duracon. HPGe and Rn tested

m

- Robotic construction of 2034 cells (~45Km of wires)
- Controlled construction, assembly and testing conditions.

1. Purge for several $T^{\frac{1}{2}}$

- 1. Purge for several $T^{\frac{1}{2}}$
- 2. Flow through cooled carbon trap

- 1. Purge for several $T^{\frac{1}{2}}$
- 2. Flow through cooled carbon trap
- 3. Release into electrostatic detector

- 1. Purge for several $T^{\frac{1}{2}}$
- 2. Flow through cooled carbon trap
- 3. Release into electrostatic detector
- 4. Rn: 41.3 ± 4.7mBq (\rightarrow 150µBq/m³ with flushing)

SuperNEMO calorimeter

- 520 x 8" + 192 x 5" high q.e. PM
- 8% FWHM, $\sigma_t = 400 \text{ ps} @ 1 \text{ MeV}$ (1% stability)

SuperNEMO source foil

- Purification methods tested: distillation, chromatography, chemical precipitation
- All foils checked with "BiPo" to measure contamination at few µBq/kg level

Current detector status

- Calorimeter and tracker delivered
- Source frame arriving next month
- Demonstrator running by end of year

Conclusions

- NEMO-3
 - World leading 0v and 2vββ measurements
 - Unique new physics searches
- SuperNEMO demonstrator (T_{1/2}^{0v} ~6.5 10²⁴y)
- Scales to 500 kg·yr ($T_{1/2}^{0v} \sim 10^{26}$ y)
- Tracker-calorimeter technique powerful $\beta\beta$ physics probe

Thank you

Questions?

Majorana and Dirac models

Two models to give neutrinos their masses

Dirac

 $\begin{bmatrix} V_L \\ V_R \\ exists, even if \\ we (currently) \\ have no way to \\ \overline{V}_R \end{bmatrix}$ v are their own antiparticle!

Majorana

Why is 0v2ß interesting

- Window into new physics
 - Supersymmetry
 - Right handed weak currents
 - Majorons
 - Doubly-charged Higgs bosons
 - Heavy neutral leptons
 - Light Majorana neutrino exchange

▲UCL

≜UCL

